In this question, you are given the average cofactor mass per cell (41.5pg) and the total cells count(105 cells). You are asked how much cofactor that will be found from those cells(microgram= 10^6 picogram). Then the calculation would be:
Cofactor mass= cofactor per cell * cell count= 41.5pg/cell * 105 cells= 4357.5pg= 4.36 x 10^3pg
Then convert the picogram(pg) into microgram: 4.36 x 10^3pg/ (10^6pg/microgram)= 4.36x10^-3 microgram or 0.00436 microgram
if 105 cells mean 10^5 cells, the answer should be 4.15 microgram
<h2>The answers are

and

</h2>
Explanation:
Given -
a) The molecular formula of ethylene glycol -

∴ The empirical formula of ethylene glycol will be -

Given -
b) The molecular formula of per-oxo-disulfuric acid (a compound used in bleaching agents) -

∴ The empirical formula of per-oxo-disulfuric acid will be -

Hence, the answers are
and
.
<span>According to my knowledge, I feel the answer is -
Particles that struck the center of the atom were repelled.
Hope this helps!
</span>
Answer:

Explanation:
Hello,
In this case, since we have grams of iron (III) oxide whose molar mass is 159.69 g/mol are able to compute the produced grams of iron by using its atomic mass that is 55.845 g/mol and their 2:4 molar ratio in the chemical reaction:

Best regards.
Answer:
The partial pressure of Ar is 356.04 mm Hg (= 0.4685 atm)
Explanation:
<u>Step 1:</u> Data given
A mixture of three gases has a total pressure of 1380 mm Hg (=1.81579 atm) at 298 K
Moles of CO2 = 1.27 moles
Moles of CO = 3.04 moles
Moles of Ar = 1.50 moles
<u>Step 2:</u> Calculate total number of moles
Total number of moles = n(CO2)+ n(CO)+ n(Ar) = 1.27 mol+ 3.04 mol+ 1.50 mol = 5.81 moles
<u>Step 3:</u> Calculate mol fraction Ar
Mol fraction Ar = 1.50 mol/5.81 mol = 0.258
<u>Step 4</u>: Calculate partial pressure
1380 mm Hg * 0.258 moles Ar = 356.04 mm Hg = 0.4685 atm
The partial pressure of Ar is 356.04 mm Hg (= 0.4685 atm)