answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alla [95]
1 year ago
9

The above shows a balloon full of gas which has a volume of 120.0 mL

Chemistry
1 answer:
bazaltina [42]1 year ago
7 0

Answer: 128 mL

Explanation: 120mL/300k=v2/320k

You might be interested in
If the initial concentration of NOBr is 0.0440 M, the concentration of NOBr after 9.0 seconds is ________. If the initial concen
Nikolay [14]

This is an incomplete question, here is a complete question.

If the initial concentration of NOBr is 0.0440 M, the concentration of NOBr after 9.0 seconds is ________.

The reaction

2NOBr(g)\rightarrow 2NO(g)+Br_2(g)

It is a second-order reaction with a rate constant of 0.80 M⁻¹s⁻¹ at 11 °C.

Answer : The concentration of after 9.0 seconds is, 0.00734 M

Explanation :

The integrated rate law equation for second order reaction follows:

k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)

where,

k = rate constant = 0.80 M⁻¹s⁻¹

t = time taken  = 142 second

[A] = concentration of substance after time 't' = ?

[A]_o = Initial concentration = 0.0440 M

Putting values in above equation, we get:

0.80M^{-1}s^{-1}=\frac{1}{142s}\left (\frac{1}{[A]}-\frac{1}{(0.0440M)}\right)

[A]=0.00734M

Hence, the concentration of after 9.0 seconds is, 0.00734 M

5 0
2 years ago
Consider a general reaction A ( aq ) enzyme ⇌ B ( aq ) A(aq)⇌enzymeB(aq) The Δ G ° ′ ΔG°′ of the reaction is − 5.980 kJ ⋅ mol −
Grace [21]

Answer : The value of K_{eq} is, 11.2

The value of \Delta G_{rxn} is -9.04 kJ/mol

Explanation :

The relation between the equilibrium constant and standard Gibbs free energy is:

\Delta G^o=-RT\times \ln K_{eq}

where,

\Delta G^o = standard Gibbs free energy  = -5.980 kJ/mol = -5980 J/mol

R = gas constant = 8.314 J/K.mol

T = temperature = 25^oC=273+25=298K

K_{eq}  = equilibrium constant  = ?

Now put all the given values in the above formula, we get:

\Delta G^o=-RT\times \ln K_{eq}

-5980J/mol=-(8.314J/K.mol)\times (298K)\times \ln K_{eq}

K_{eq}=11.2

Thus, the value of K_{eq} is, 11.2

Now we have to calculate the \Delta G_{rxn}.

The formula used for \Delta G_{rxn} is:

The given reaction is:

A(aq)\rightleftharpoons B(aq)

\Delta G_{rxn}=\Delta G^o+RT\ln Q

\Delta G_{rxn}=\Delta G^o+RT\ln \frac{[B]}{[A]}    ............(1)

where,

\Delta G_{rxn} = Gibbs free energy for the reaction  = ?

\Delta G_^o =  standard Gibbs free energy  = -30.5 kJ/mol

R = gas constant = 8.314\times 10^{-3}kJ/mole.K

T = temperature = 37.0^oC=273+37.0=310K

Q = reaction quotient

[A] = concentration of A = 1.8 M

[B] = concentration of B = 0.55 M

Now put all the given values in the above formula 1, we get:

\Delta G_{rxn}=(-5980J/mol)+[(8.314J/mole.K)\times (310K)\times \ln (\frac{0.55}{1.8})

\Delta G_{rxn}=-9035.75J/mol=-9.04kJ/mol

Therefore, the value of \Delta G_{rxn} is -9.04 kJ/mol

3 0
2 years ago
Beer brewing begins with steeping grains in hot water, releasing the sugars inside. The sugar water is then heated to a boil and
user100 [1]

Answer:

The answers to the question are

a. 166.64 ° F

b. 217990.08 J/hour or 60.55 J/s = 60.55 watts

c. 13.C

Explanation:

a. To solve the question we list out the given variables thus

mass of grain = 16.5 lbs

Temperature of grain = 67 °F

Volume of hot water = 5 gals = ‪0.02273‬ m³

Equilibrium temperature of the mixture = 154 °F

Specific heat capacity of the grain = 0.44 times specific heat capacity  of water

Therefore we have

Heat supplied by hot water = heat gained by mixture

Density of the water = 997 kg/m³ which gives

Therefore the mass of the water = (Density of the water) × (Volume of the water) = (997 kg/m³) × ‪(0.02273‬ m³) = 22.66181 kg

Therefore the heat supplied by the water =22.66 kg×1000 g/kg ×4.2 J/g°C×(Tₓ -‪67.78 °C) = ‪7.48 kg×1000 g/kg×0.44×4.2 J/g°C×(67.78 -‪19.44)

= 95172 × (Tₓ -‪67.78 °C) =668205.7536 J

(Tₓ -‪67.78 °C) = 7.02 from where Tₓ = 74.80 °C = ‪166.64 ° F

The initial temperature (strike temperature) of the hot water = 74.80 °C = 166.64 ° F

b. Where the mixture lost two degrees we have

22.66 kg×1000 g/kg ×4.2 J/g°C×2 °C + ‪7.48 kg×1000 g/kg×0.44×4.2 J/g°C×2  °C = 217990.08 J therefore the average energy lost per unit time = 217990.08 J/hour or 60.55 J/s

c. To find out how much it cost we have

Heat energy required to raise 5 gallons of water from 110 °F to 166.64 °F we have

22.66 kg×1000 g/kg ×4.2 J/g°C×(74.8 °C-‪43.33 °C) = 2994745.92 J

Energy lost during the heating = 10% = 299474.59 J

Total energy supplied 2994745.92 J + 299474.59 J  = 3294220.5 J

Time for heating = 47 minutes, therefore rate of energy consumption = (3294220.5 J)/ (47×60) = 1168.163 Watt 1.168 kW

Cost of energy = 15.C per kilowatt-hour therefore 1.168 kW for 47 minutes will cost

1.168 kW ×47/60×15 = 13.C

therefore it cost 13.C to heat the 5 gallons of tap water initially at 110 ° F to the strike temperature 166.64 °F

6 0
2 years ago
At this point Ron is slightly confused, this isn’t surprising. However, Hermione is doing rather well with them. This also isn’t
Zigmanuir [339]

Answer:

\boxed{\text{0.780 atm}}

Explanation:

Hermione is pretty smart. She realizes that, according to Dalton's Law of Partial Pressures, each gas exerts its pressure independently of the others, as if the others weren't even there.

She shows Ron how to use the Ideal Gas Law to solve the problem.

pV = nRT

She collects the data:

V = 1.00 L; n = 0.0319 mol; T = 25.0 °C

She reminds him to convert the temperature to kelvins

T = (25.0 +273.15) K = 298.15 K

Then she shows him how to do the calculation.

p \times \text{1.00 L} = \text{0.0319 mol} \times \text{L}\cdot\text{atm}\cdot\text{0.082 06 K}^{-1}\text{mol}^{-1} \times \text{298.15 K}\\\\1.00p = \text{0.7805 atm}\\\\p = \textbf{0.780 atm}\\\\\text{The partial pressure of the nitrogen is } \boxed{\textbf{0.780 atm}}

Isn't she smart?

4 0
2 years ago
For each reaction, find the value of ΔSo. Report the value with the appropriate sign. (a) 3 NO2(g) + H2O(l) → 2 HNO3(l) + NO(g)
aev [14]

Answer:

ΔS° = -268.13 J/K

Explanation:

Let's consider the following balanced equation.

3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)

We can calculate the standard entropy change of a reaction (ΔS°) using the following expression:

ΔS° = ∑np.Sp° - ∑nr.Sr°

where,

ni are the moles of reactants and products

Si are the standard molar entropies of reactants and products

ΔS° = [2 mol × S°(HNO₃(l)) + 1 mol × S°(NO(g))] - [3 mol × S°(NO₂(g)) + 1 mol × S°(H₂O(l))]

ΔS° = [2 mol × 155.6 J/K.mol + 1 mol × 210.76 J/K.mol] - [3 mol × 240.06 J/K.mol + 1 mol × 69.91 J/k.mol]

ΔS° = -268.13 J/K

7 0
2 years ago
Other questions:
  • The specific heat of nickel is 0.44 J/g*⁰C. How much energy needed to change the temperature of 95.4g of nickel from 32⁰C to 22⁰
    6·2 answers
  • Calculate the mass, in grams, of 2.74 l of co gas measured at 33°c and 945 mmhg.
    7·1 answer
  • A sample of water with a mass of 587.00 kg is heated with 87 kJ of energy to a temperature of 518.4 K. The specific heat of wate
    12·2 answers
  • A 1.24g sample of a hydrocarbon, when completely burned in an excess of O2 yields 4.04g Co2 and 1.24g H20. Draw plausible struct
    5·1 answer
  • Question 1: Which of the following statement is false about conjugated systems?
    7·1 answer
  • 16.34 g of CuSO4 dissolved in water giving out 55.51 kJ and 25.17 g CuSO4•5H2O absorbs 95.31 kJ. From the following reaction cyc
    10·1 answer
  • Compounds X, C9H19Br, and Y, C9H19Cl, undergo base-promoted E2 elimination to give the same single alkene product, Z. Catalytic
    9·1 answer
  • Is humidity a extensive or intensive property
    15·2 answers
  • An earthquake on the ocean floor produced a giant wave called a tsunami. The tsunami traveled through the ocean and hit a remote
    8·1 answer
  • Identify the true statements about surface tension. Molecules along the surface of a liquid behave differently than those in the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!