D
Avogadro's number allows us to measure the amount of atoms or molecules in one mole of a substance.
Answer: In the given reaction increasing the amount of solution is likely to increase the rate of the reaction.
Explanation:
It is known that more is the number of reactant molecules taking part in a chemical reaction more will be the number of collisions occur. As a result, more will be the rate of chemical reaction.
For example, When hydrogen peroxide dissociates into water and oxygen on addition of manganese oxide then increasing the number of reactants (hydrogen peroxide and manganese oxide) will also lead in the increase in rate of reaction.
Thus, we can conclude that in the given reaction increasing the amount of solution is likely to increase the rate of the reaction.
Answer: Option (c) is the correct answer.
Explanation:
A physical model is defined as a model which represents how atoms are bonded together and structure of a molecule.
Physical model shows the three dimensional structure of a molecule. Physical models helps to easily understand and visualize the configuration, single bonds, double bonds and total atoms within a molecule.
Thus, we can conclude that given structure of carbonic acid best describes a physical model.
<em>Answer:</em>
The equlibrium concentration sof Ca+2 ion willl be 4.9×10∧-3 M
<em>Data Given:</em>
Ksp of CaSO4 = 2.4 × 10∧-5
CaSO4 ⇔ Ca+2 + SO4∧-2
<em>Solution:</em>
Ksp = [Ca+2].[ SO4∧-2]
2.4 × 10∧-5 = [x].[x]= x²
x = 4.9×10∧-3 M
<em>Result:</em>
- The conc. of Ca+2 ion is 4.9×10∧-3 M
Answer: D. They are made up of hard spheres that are in random motion.
Explanation:
A gas is a <u>state of aggregation of matter</u> in which, under certain conditions of temperature and pressure, <u>its molecules interact weakly with each other, without forming molecular bonds</u>, adopting the shape and volume of the container that contains them and tending to separate everything possible because of its <u>high concentration of kinetic energy</u>.
The molecules of a gas are practically <u>free</u> and have the ability to be distributed throughout the space in which they are contained because <u>the gravitational forces and attraction between them are practically negligible</u> compared to the speed at which they move. .
Therefore, gas molecules do not travel specific trajectories or vibrate in a stationary position, instead <u>they move quickly and randomly through the entire space of the container that contains them.</u>