The simplified solubility of glucose at 30°C is 1.25 g/g of water. Considering that the density of water at 30°C is 1 g/mL, the equivalent mass of 400 mL of water is also 400g.
The concentration of the solution in water is,
550 g/400g of water = 1.375 g glucose / g of water
Since the concentration is higher compared to the solubility of glucose at the specified temperature, it can be said that the solution is SATURATED.
M1V1 = M2V2
(2.50)(100.0) = (0.550)V2
V2 = 455mL
You can make 455mL of 0.550M solution from 100.0mL of 2.50M solution.
Explanation:
Endothermic animals are also known as warm-blooded, they have the capacity to regulate their body temperature independent of the environment. They have mechanisms to compensate if heat loss exceeds heat generation (shivers) Or if heat generation exceeds the heat loss (panting, sweating).
On the other hand, ectothermal animals are known as cold blooded organisms and depend on external sources, like sunlight, to regulate their body temperature, reptiles are ectothermals.
To determine if the animal of interest is endo or ectothermal you’ll have to consider that is a reptile, you’ll also observe that it consumes less food and finally it’ll have more difficulties to adapt to sudden temperature changes.
I hope you find this information useful and interesting! Good luck!
N₀ is the number of C-14 atoms per kg of carbon in the original sample at time = Os when its carbon was of the same kind as that present in the atmosphere today. After time ts, due to radioactive decay, the number of C-14 atoms per kg of carbon is the same sample which has decreased to N. λ is the radioactive decay constant.
Therefore N = N₀e-λt which is the radioactive decay equation,
N₀/N = eλt In (N₀.N= λt. This is the equation 1
The mass of carbon which is present in the sample os mc kg. So the sample has a radioactivity of A/mc decay is/kg. r is the mass of C-14 in original sample at t= 0 per total mass of carbon in a sample which is equal to [(total number of C-14 atoms in the sample at t m=m 0) × ma]/ total mass of carbon in the sample.
Now that the total number of C-14 atoms in the sample at t= 0/ total mass of carbon in sample = N₀ then r = N₀×ma
So N₀ = r/ma. this equation 2.
The activity of the radioactive substance is directly proportional to the number of atoms present at the time.
Activity = A number of decays/ sec = dN/dt = λ(number of atoms of C-14 present at time t) =
λ₁(N×mc). By rearranging we get N = A/(λmc) this is equation 3.
By plugging in equation 2 and 3 and solve t to get
t = 1/λ In (rλmc/m₀A).
The statement that describes a chemical reaction is the statement c. reactants form products when atoms are rearranged.<span> The atoms of the reactants are arranged is a specific position and number forming a determined compound. In a chemical reaction, the products are different compounds than the reactants, so the atoms have to rearrange to form these new compounds (the products).</span><span />