In NaMnO₄, Mn has the highest oxidation number.
The question is incomplete, the complete question is;
Which of the following species contains manganese with the highest oxidation number?
A) Mn
B) MnF₂
C) Mn₃(PO₄)₂
D) MnCl₄
E) NaMnO₄
In order to ascertain the specie that contains manganese with the highest oxidation number, we must calculate the oxidation number of manganese in each of the species one after the other.
1) For Mn, the oxidation number of Mn is zero because the atom is uncombined.
2) For MnF₂;
Mn has an oxidation number of +2
3) For Mn₃(PO₄)₂
Mn has an oxidation number of +2
4) For MnCl₄
Mn has an oxidation number of +4
5) For NaMnO₄
Mn has an oxidation number of +7
Hence in NaMnO₄, Mn has the highest oxidation number.
Learn more: brainly.com/question/10079361
Well, first we must remember that

This is because


So then

<span>Let's assume
that the F</span>₂ gas has ideal gas behavior.
<span>
Then we can use ideal gas formula,
PV = nRT
Where, P is the pressure of the gas (Pa), V is the volume of the gas
(m³), n is the number of moles of gas (mol), R is the universal gas
constant ( 8.314 J mol</span>⁻¹ K⁻<span>¹) and T is temperature in Kelvin.</span>
Moles = mass / molar mass
Molar mass of F₂ = 38 g/mol
Mass of F₂ = 76 g
Hence, moles of F₂ = 76 g / 38 g/mol = 2 mol
<span>
P = ?
V = 1.5 L = 1.5 x 10</span>⁻³ m³
n = 2 mol
R = 8.314 J mol⁻¹ K⁻<span>¹
T = -37 °C = 236 K
By substitution,
</span>
P x 1.5 x 10⁻³ m³ = 2 mol x 8.314 J mol⁻¹ K⁻¹ x 236 K
p = 2616138.67 Pa
p = 25.8 atm = 26 atm
Hence, the pressure of the gas is 26 atm.
Answer is "a".
<span>
</span>
Answer:
1.123x10⁻⁴ moles of alanine
Explanation:
In order to convert grams of alanine into moles, <em>we need to know its molecular weight</em>:
The formula for alanine is C₃H₇NO₂, meaning <u>its molecular weight would be</u>:
- 12*3 + 7*1 + 14 + 16*2 = 89 g/mol
Then we <u>divide the sample mass by the molecular weight</u>, to do the conversion:
- 1.0x10⁻² g ÷ 89 g/mol = 1.123x10⁻⁴ moles
Answer:
protons
Explanation:
electron number changes when the atom reacts with another atom to gain a full octet
neutron number changes when it goes through radioactive decay
but proton number never changes