Answer:
Explanation:
Oxidation no is equal to charge on each atomic ion. If it is increased , element is oxidised and if it is decreased , element is reduced .
2AgCl+Zn⟶2Ag+ZnCl2
Zinc is oxidised , Ag is reduced .
Ag⁺ converts to Ag . ( oxidation number is reduced ) so Ag is reduced.
Zn converts to Zn⁺² ( oxidation number is increased ) so Zn is oxidised .
4NH₃+3O₂⟶2N₂+6H₂O
oxidation number of nitrogen in ammonia is - 3
oxidation no of nitrogen in nitrogen is zero.
Oxidation no of nitrogen is increased so it is oxidised.
oxidation no of oxygen is zero in oxygen and its oxidation no in water is -2 . So oxidation no is reduced so oxidation is reduced.
Fe₂O₃+2Al⟶Al₂O₃+2Fe
oxidation no of Fe in Fe₂O₃ is + 3 and it is zero in Fe so iron is reduced.
oxidation no of Al in Al is zero and it is +3 in Al₂O₃ so it is oxidised .
The First Ionization energy of Nitrogen is greater (Not smaller)than that of Phosphorous. This is because going down the group (N and P are in same group) the number of shells increases, the distance of valence electrons from Nucleus increases and hence due to less interaction between nucleus and valence electrons it becomes easy to knock out the electron.
<span>The second ionization energy of Na is larger than that of Mg because after first loss of electron Na has gained Noble Gas Configuration (Stable Configuration) and now requires greater energy to loose both second electron and Noble Gas Configuration. While Mg after second ionization attains Noble Gas Configuration hence it prices less energy.</span>
Answer: Option (c) is the correct answer.
Explanation:
A water molecule is made up of two hydrogen atoms and one oxygen atom. Due to the difference in electronegativity of hydrogen and oxygen, the electrons are pulled more towards oxygen atom.
As a result, a partial positive charge will develop on hydrogen atom and a partial negative charge will develop on oxygen atom.
Thus, we can conclude that adjacent water molecules interact through the electrical attraction between the hydrogen of one water molecule and the oxygen of another water molecule.
Answer:
lignands, the central atom/metal ion
Explanation:
Number of moles of CO2 =
Mass /Ar
= 50.2 / (12 + 32)
1.14 mols
For every 1 mol of gas, there will be
24000 cm^3 of gas
Vol. = 1.14 x 24 dm^3
= 27.36 dm^3