I believe the correct answer is the first option. To increase the molar concentration of the product N2O4, you should increase the pressure of the system. You cannot determine the effect of changing the temperature since we cannot tell whether it is an endothermic or an exothermic reaction. Also, decreasing the number of NO2 would not increase the product rather it would shift the equilibrium to the left forming more reactants. The only parameter we can change would be the pressure. And, since NO2 takes up more space than the product increasing the pressure would allow the reactant to collide more forming the product.
High tides and low tides are caused by the moon. The moon's gravitational pull generates something called the tidal force. The tidal force causes Earth—and its water—to bulge out on the side closest to the moon and the side farthest from the moon. These bulges of water are high tides.
Answer:
A wave reflection interaction (reflected by the wall)
Explanation:
In a reflection, the propagating wave is bounced off the reflecting surface because the medium of the surface prevents the propagation of the wave through it, such that wave is redirected at an angle equal to the angle of incident on the reflecting surface
Reflection takes place with the different forms of waves, such as sound wave, water waves, and light wave
The objects around us are seen with the aid of reflection of light from a light source such that the reflected light enters our eyes after being reflected on the surface of the object, and the object is seen.
Answer:
334J/g
Explanation:
Data obtained from the question include:
Mass (m) = 1g
Specific heat of Fusion (Hf) = 334 J/g
Heat (Q) =?
Using the equation Q = m·Hf, we can obtain the heat released as follow:
Q = m·Hf
Q = 1 x 334
Q = 334J
Therefore, the amount of heat released is 334J
Answer:
D. Ultraviolet light should have a short wavelength, not a long wavelength.
Explanation:
just took the quiz on Ed