Answer:
ΔH = -976.5 kJ
Explanation:
For the reaction given, there are 2 moles of benzene (C6H6). The heat of this reaction is -6278 kJ, which means that the combustion of 2 moles of benzene will lose 6278 kJ of heat. It is an exothermic reaction.
The value of ΔH, the enthalpy, is a way of measurement of the heat, and it depends on the quantity of the matter (number of moles).
So, 24.3 g of benzene has :
n = mass/ molar mass
n = 24.3/78.11
n = 0.311 moles
2 moles ------------ -6278 kJ
0.311 moles ----------- x
By a simple direct three rule:
2x = -1953.08
x = -976.5 kJ
None of the above.
1 mole filled with gas at STP occupies
=22.4 L
∴ 3mole of kr gas at STP occupies
= 3 × 22.4
= 67.2 L
Answer:
<ERROR>-----------------------------------------------------------------------------<ERROR>
Explanation:
Answer:
The MAD of city 2 is less than the MAD for city 1, which means the average monthly temperature of city 2 vary less than the average monthly temperatures for City 1.
Explanation:
For comparing the mean absolute deviations of both data sets we have to calculate the mean absolute deviation for both data sets first,
So for city 1:
Now to calculate the mean deviations mean will be subtracted from each data value. (Note: The minus sign is ignored as the deviation is the distance of value from the mean and it cannot be negative. For this purpose absolute is used)
The deviations will be added then.
So the mean absolute deviation for city 1 is 24 ..
For city 2:
Now to calculate the mean deviations mean will be subtracted from each data value. (Note: The minus sign is ignored)
The deviations will be added then.
So the MAD for city 2 is 11.33 ..
So,
The MAD of city 2 is less than the MAD for city 1, which means the average monthly temperature of city 2 vary less than the average monthly temperatures for City 1.
Answer:

Explanation:
Hello,
In this case, since iron (III) chloride (FeCl3) and barium chloride (BaCl2) are both chloride-containing compounds, we can compute the moles of chloride from each salt, considering the concentration and volume of the given solutions, and using the mole ratio that is 1:3 and 1:2 for the compound to chlorine:

So the total mole of chloride ions:

And the total volume by adding the volume of each solution in L:

Finally, the molarity turns out:

Best regards.