answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena-14-01-66 [18.8K]
2 years ago
12

suppose that during the icy hot lab that 65 kj of energy were transferred to 450 g of water at 20 C. What would have been the fi

nal temperature of the water
Chemistry
1 answer:
balandron [24]2 years ago
5 0

Answer:

The final temperature of water is 54.5 °C.

Explanation:

Given data:

Energy transferred = 65 Kj

Mass of water = 450 g

Initial temperature = T1 = 20 °C

Final temperature= T2 = ?

Solution:

First of all we will convert the heat in Kj to joule.

1 Kj = 1000 j

65× 1000 = 65000 j

specific heat of water is 4.186 J /g. °C

Formula:

q = m × c × ΔT

ΔT = T2 - T1

Now we will put the values in Formula.

65000 j = 450 g × 4.186 J /g. °C  × (T2 - 20°C )

65000 j = 1883.7 j /°C × (T2 - 20°C )

65000 j/ 1883.7 j /°C  = T2 - 20°C

34.51 °C = T2 - 20°C

34.51 °C + 20 °C = T2

T2 = 54.5 °C

You might be interested in
(i) Based on the graph, determine the order of the decomposition reaction of cyclobutane at 1270 K. Justify your answer.
Leni [432]

Answer:

(c)(i) The order of the reaction based on the graph provided is first order.

(ii) 99% of the cyclobutane would have decomposed in 53.15 milliseconds.

d) Rate = K [Cl₂]

K = rate constant

The justification is presented in the Explanation provided below.

e) A catalyst is a substance that alters the rate of a reaction without participating or being used up in the reaction.

Cl₂ is one of the reactants in the reaction, hence, it participates actively and is used up in the process of the reaction, hence, it cannot be termed as a catalyst for the reaction.

So, this shows why the student's claim is false.

Explanation:

To investigate the order of a reaction, a method of trial and error is usually employed as the general equations for the amount of reactant left for various orders are known.

So, the behaviour of the plot of maybe the concentration of reactant with time, or the plot of the natural logarithm of the concentration of reactant with time.

The graph given is evidently an exponential function. It is a graph of the concentration of cyclobutane declining exponentially with time. This aligns with the gemeral expression of the concentration of reactants for a first order reaction.

C(t) = C₀ e⁻ᵏᵗ

where C(t) = concentration of the reactant at any time

C₀ = Initial concentration of cyclobutane = 1.60 mol/L

k = rate constant

The rate constant for a first order reaction is given

k = (In 2)/T

where T = half life of the reaction. It is the time taken for the concentration of the reactant to fall to half of its initial concentration.

From the graph, when the concentration of reactant reaches half of its initial concentration, that is, when C(t) = 0.80 mol/L, time = 8.0 milliseconds = 0.008 s

k = (In 2)/0.008 = (0.693/0.008) = 86.64 /s

(ii) Calculate the time, in milliseconds, that it would take for 99 percent of the original cyclobutane at 1270 K to decompose

C(t) = C₀ e⁻ᵏᵗ

when 99% of the cyclobutane has decomposed, there's only 1% left

C(t) = 0.01C₀

k = 86.64 /s

t = ?

0.01C₀ = C₀ e⁻ᵏᵗ

e⁻ᵏᵗ = 0.01

In e⁻ᵏᵗ = In 0.01 = -4.605

-kt = -4.605

t = (4.605/k) = (4.605/86.64) = 0.05315 s = 53.15 milliseconds.

d) The reaction mechanism for the reaction of cyclopentane and chlorine gas is given as

Cl₂ → 2Cl (slow)

Cl + C₅H₁₀ → HCl + C₅H₉ (fast)

C₅H₉ + Cl → C₅H₉Cl (fast)

The rate law for a reaction is obtained from the slow step amongst the the elementary reactions or reaction mechanism for the reaction. After writing the rate law from the slow step, any intermediates that appear in the rate law is then substituted for, using the other reaction steps.

For This reaction, the slow step is the first elementary reaction where Chlorine gas dissociates into 2 Chlorine atoms. Hence, the rate law is

Rate = K [Cl₂]

K = rate constant

Since, no intermediates appear in this rate law, no further simplification is necessary.

The obtained rate law indicates that the reaction is first order with respect to the concentration of the Chlorine gas and zero order with respect to cyclopentane.

e) A catalyst is a substance that alters the rate of a reaction without participating or being used up in the reaction.

Cl₂ is one of the reactants in the reaction, hence, it participates actively and is used up in the process of the reaction, hence, it cannot be termed as a catalyst for the reaction.

So, this shows why the student's claim is false.

Hope this Helps!!!

6 0
2 years ago
Which of the following statements is true about the following reaction?
MAVERICK [17]

The correct reaction equation is:

3NaHCO_{3} (aq) + C_{6}H_{8}O_{7} (aq) \rightarrow 3CO_{2} (g) + 3H_{2}O (l) + Na_{3}C_{6}H_{5}O_{7} (aq)

Answer:

b) 1 mole of water is produced for every mole of carbon dioxide produced.

Explanation: <u>CONVERT EVERYTHING TO MOLES OR VOLUME, THEN COMPARE IT WITH THE COMPOUND'S STOICHIOMETRY IN CHEMICAL EQUATION.</u>

a) <u>22.4 L of CO_{2} gas</u> is produced only when <u>\frac{22.4}{3} L of  C_{6}H_{8}O_{7}</u> is reacted with 22.4 L of NaHCO_{3}. So it is wrong.

b) Since in the chemical equation the stoichiometric coefficient of CO_{2}  and H_{2}O are same so the number of moles or volume of each of them will be same whatever the amount of reactants taken. <u>Therefore it is correct option.</u>

c)  6.02\times 10^{23} molecules is equal 1 mole of Na_{3}C_{6}H_{5}O_{7} if produced then 3 moles of NaHCO_{3} is required, which is not given in the option. So it is wrong.

d) 54 g of water or 3 moles of H_{2}O (<em>Molecular Weight of water is 18 g</em>) is produced when 3 moles of NaHCO_{3} is used but in this option only one mole of NaHCO_{3} is given. So it is wrong.

8 0
2 years ago
Read 2 more answers
A mixture of three noble gases has a total pressure of 1.25 atm. The individual pressures exerted by neon and argon are 0.68 atm
vlabodo [156]
Add the Pressure of neon and argon that is 0.68 +0.35= 1.03
Total pressure that is 1.25 -1.03=0.22 atm
5 0
1 year ago
Read 2 more answers
Which diagram shows the correct way to represent an ionic compound of magnesium oxide?
Daniel [21]
The answer is ................................ c
8 0
2 years ago
Phosphorous acid, h3po3(aq), is a diprotic oxyacid that is an important compound in industry and agriculture. calculate the ph f
Varvara68 [4.7K]

Answer:

Explanation:

(a)

Before the addition of KOH :-

Given pKa1 of H3PO3 = 1.30

we know , pKa1 = - log10Ka1

Ka1 = 10-pKa1

Ka1 = 10-1.30

Ka1 = 0.0501

similarly pKa2 = 6.70 ,therefore Ka2 = 1.99 x 10-7

because Ka1 >> Ka2 , therefore pH of diprotic acid i.e H3PO3 can be calculated from first dissociation only .

ICE table is :-

H3PO3 (aq) <-------------> H+ (aq) + H2PO3-(aq)

I 2.4 M 0 M 0 M

C - x + x + x

E (2.4 - x )M x M x M

x = degree of dissociation

Now expression of Ka1 is :

Ka1 = [ H+ ] [ H2PO3-] / [ H3PO3]

0.0501 = x2 / 2.4 - x

on solving for x by using quadratic formula , we have

x = 0.32

Now [ H+ ] = [ H2PO3-] = 0.32 M

pH = - log [H+]

pH = - log 0.32

pH = - ( - 0.495)

pH = 0.495

Hence pH before the addition of KOH = 0.495

(b)

After the addition of 25.0 mL of 2.4 M KOH :-

Number of moles of KOH = 2.4 M x 0.025 L = 0.06 mol

Number of moles of H3PO3 = 2.4 M x 0.050 L = 0.12 mol

Now 0.06 moles of KOH is equal to the half of the moles required for the first equivalent point . therefore pH at this point is equal to pKa1 .

Hence pH = 1.30 M

(c)

After the addition of 50.0 mL of 2.4 M KOH :-

Number of moles of KOH = 2.4 M x 0.050 L = 0.12 mol

Number of moles of H3PO3 = 2.4 M x 0.050 L = 0.12 mol

because Number of moles of H3PO4 = Number of moles of KOH

therefore , this point is the first equivalence point

and pH = pKa1 + pKa2 / 2

pH = 1.30 + 6.70 / 2

pH = 4.00

Hence pH = 4.00

(d)

After the addition of 75.0 mL of 2.4 M KOH :-

Number of moles of KOH = 2.4 M x 0.075 L = 0.18 mol

Number of moles of H3PO3 = 2.4 M x 0.050 L = 0.12 mol

This is the half way of the second equivalence point , therefore pH is equal to pKa2 .

Hence pH = 6.70

5 0
2 years ago
Other questions:
  • A 1.20 g sample of water is injected into an evacuated 5.00 l flask at 65°c. part of the water vaporizes and creates a pressure
    10·1 answer
  • Which of the following is an example of how science can solve social problems? It can stop excessive rain from occurring. It can
    14·2 answers
  • Calculate the ph of a solution formed by mixing 200.0 ml of 0.30 m hclo with 300.0 ml of 0.20 m kclo. the ka for hclo is 2.9 × 1
    7·2 answers
  • What volume will 12.0 g of oxygen gas occupy at 25 c and a pressure of 52.7 kpa?
    6·1 answer
  • eleanor purchased $2568 worth of stock and paid her broker a 0.5% fee. She sold the stock when the stock price increased to 3928
    14·1 answer
  • Exactly 17.0 mL of a H2SO4 solution was required to neutralize 45.0 mL of 0.235 M NaOH. What was the concentration of the H2SO4
    6·1 answer
  • A cubic box with sides of 20.0 cm contains 2.00 × 1023 molecules of helium with a root-mean-square speed (thermal speed) of 200
    12·1 answer
  • Biacetyl, the flavoring that makes margarine taste "just like butter," is extremely stable at room temperature, but at 200°C it
    10·1 answer
  • A bar magnet and a second object are hung from metal rods. The diagram below shows what happens when both objects are released.
    13·2 answers
  • Order the sentence and write sentence FERTILISM IN NO ARE REPRODUCTION FLOWERS ASEXUAL THERE OR​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!