As land use<span> patterns change and the watershed's population grows, the amount of ... </span>Other<span> solutions to nitrogen and phosphorus pollution include upgrading stormwater ... on septic systems, and decreasing </span>fertilizer<span> applications to </span><span>lawns</span>
Well ask yourself why don't we count it in moles and you should get your answer.
<span>The answer is 4. The molecules of each material entice each other over dispersion (London) intermolecular forces. Whether a substance is a solid, liquid, or gas hinge on the stability between the kinetic energies of the molecules and their intermolecular magnetisms. In fluorine, the electrons are firmly apprehended to the nuclei. The electrons have slight accidental to stroll to one side of the molecule, so the London dispersion powers are comparatively weak. As we go from fluorine to iodine, the electrons are far from the nuclei so the electron exhausts can more effortlessly misrepresent. The London dispersion forces developed to be increasingly stronger.</span>
NiCl₂ commonly forms a green aqueous solution.
The correct answer is the second option. A strong acid contributes the most hydronium ions in a solution. When an acid is in aqueous form, it dissociates into ions namely where one of the ions are hydronium ions. If the acid is a strong one, the ions dissociates completely contributing more hydronium ions.