Answer:
XY₂Z₄
2.35 mol Z
Explanation:
A sample of the compound contains 0.221 mol X, 0.442 mol Y, and 0.884 mol Z. We can find the simplest formula (empirical formula) by <em>dividing all the numbers of moles by the smallest one</em>.
X: 0.221/0.221 = 1
Y: 0.442/0.221 = 2
Z: 0.884/0.221 = 4
The simplest formula is XY₂Z₄.
The molar ratio of X to Z is 1:4. The moles of Z in a sample that contained 0.588 moles of X is:
0.588 mol X × (4 mol Z/1 mol X) = 2.35 mol Z
Answer:
itsy I just got the tests back and I got it right letterc
Answer:
Explanation:
idk why all u guys like trump who do.. hes just a big pain in the a*s.
Answer :
The correct answer is %IC = 10 % and bond is covalent bond with slight polarity.
<u>Percent Ionic Character :</u>
It is defined as percent of ionic character present in a polar covalent bond . The formula of % ionic character (%IC) is given as follows :

Where Xa = Electronegativity of A atom and Xb = Electronegativity of B atom
Given : Molecule is TiAl₃
Electronegativity of Ti = 2.0
Electronegativity of Al = 1.6 ( From image shared )
Plug the value in above formula :



Value of e⁻¹ = 0.90
Percent ionic character = 1 - 0.90 * 100
Percent Ionic character = 10 %
<u>Since the % IC is 10 % , which is very less comparatively , hence the bond is covalent and very less polar .</u>
<u>Answer:</u> The products of the reaction will be 
<u>Explanation:</u>
Single displacement reaction is defined as the reaction in which more reactive element displaces a less reactive element from its chemical reaction.
The general chemical equation for the single displacement reaction follows:

The given chemical equation follows:

Bromine element is more reactive than iodine element. Thus, can easily replace iodine from its chemical reaction.
Hence, the products of the reaction will be 