Answer:
Heat lost to the surroundings
Heat lost to the thermometer
Explanation:
All changes in heat, or energy, can be explained. Many of the reactions or changes we see in the world involve the conversion of energy. For example as we heat up a substance (eg. water), the amount of energy we put in should give us an exact temperature. However, this is a "perfect world" scenario, and does not occur in real life. Whenever heat is added to a substance like water, we always need to account for the energy that is going to be lost. For example, heat lost to evaporation or even the effect of measuring the temperature with a thermometer (the introduction of anything including a thermometer will affect the temperature).
It's a because if you add them together you till get 1.40
For this problem, we use the formula for sensible heat which is written below:
Q= mCpΔT
where Q is the energy
Cp is the specific heat capacity
ΔT is the temperature difference
Q = (55.5 g)(<span>0.214 cal/g</span>·°C)(48.6°C- 23°C)
<em>Q = 304.05 cal</em>
Answer:
To prepare 50L of 32% solution you need: 11L of 30% solution, 22L of 50% solution and 17L of 10% solution.
Explanation:
A 32% solution of acid means 32L of acid per 100L of solution. As the chemist wants to make a solution using twice as much of the 50% solution as of the 30% solution it is possible to write:
2x*50% + x*30% + y*10% = 50L*32%
<em>130x + 10y = 1600 </em><em>(1)</em>
<em>-Where x are volume of 30% solution, 2x volume of 50% solution and y volume of 10% solution-</em>
Also, it is possible to write a formula using the total volume (50L), thus:
<em>2x + x +y = 50L</em>
<em>3x + y = 50L </em><em>(2)</em>
If you replace (2) in (1):
130x + 10(50-3x) = 1600
100x + 500 = 1600
100x = 1100
<em>x = 11L -Volume of 30% solution-</em>
2x = 22L -Volume of 50% solution-
50L - 22L - 11L = 17 L -Volume of 10% solution-
I hope it helps!