Answer:
0.020 moles of
can be formed
Explanation:
1. First determine the number of moles of LiOH.
Molarity is given by the following expression:

Solving for moles of solute:
moles of solute = M * Liters of solution
Converting 175.0mL to L:

Replacing values:
moles of solute = 0.227M*0.175L
moles of solute = 0.040
Therefore there are 0.040 moles of LiOH
2. Then write the balanced chemical reaction and use the stoichiometry of the reaction to calculate the number of moles of
produced:

As the problem says that there are excess of
, the limiting reagent is the LiOH.
can be formed
Here we have to get the height of the column in meter, filled with liquid benzene which exerting pressure of 0.790 atm.
The height of the column will be 0.928 m.
We know the relation between pressure and height of a liquid placed in a column is: pressure (P) = Height (h) × density of the liquid (ρ) × gravitational constant (g).
Here the pressure (P) is 0.790 atm,
or [0.790 × (1.013 × 10⁶)] dyne/cm². [As 1 atm is equivalent to 1.013 × 10⁶ dyne/cm²]
Or, 8.002ₓ10⁵ dyne/cm².
density of benzene is given 0.879 g/cm³.
And gravitational constant (g) is 980 cm/sec².
On plugging the values we get:
8.002×10⁵ = h × 0.879 × 980
Or, h = 928.931 cm
Or, h = 9.28 m (As 1 m = 100 cm)
Thus the height will be 9.28 m.
Answer:
Explanat
ion:
Hello,
In this case, considering the given diameter which is related to a radius of 5.0 mm and the formula for the calculation of the volume of the sphere, its volume in cubic centimeters (5.00 mm = 0.5 cm) is then:

In such a way, the density turns out:

Best regards.
<span>Baking a cake is an example of making something where the ingredients must be in fixed ratios. Recipes call for specific ratios of ingredients in order to cook properly, and when a recipe for a cake is modified to feed greater or fewer people the ratio remains the same as the original recipe.</span>
Answer: -
6
Explanation: -
The given unbalanced chemical equation is As + NaOH -- > Na3AsO3 + H2
We see there 3 sodium on the right side from Na3AsO3.
But there are only 1 sodium on the left from NaOH.
So we multiply NaOH by 3.
As + 3 NaOH -- > Na3AsO3 + H2
Now we see the number of Hydrogen on the left is 3.
But the number of hydrogens is 2 on the left.
So, we multiply to get both sides 6 hydrogen.
As + 6NaOH -- > Na3AsO3 + 3 H2
Rebalancing for Na,
As + 6NaOH -- > 2Na3AsO3 + 3 H2.
Finally balancing As,
2 As + 6 NaOH -- > 2Na3AsO3 + 3H2
The coefficient of the NaOH molecule in the balanced reaction is thus 6