Answer
- continuous removal of PH3
- adding more of P into the system
Explanation:
In the reaction P4(g)+6H2(g) ⇌ 4PH3(g);
- The effect of temperature on equilibrium has to do with the heat of reaction. Recall that for an endothermic reaction, heat is absorbed in the reaction, and the value of ΔH is positive. Thus, for an endothermic reaction, we can picture heat as being a reactant:
heat+A⇌BΔH=+
- Since the reaction is endothermic reaction, heat is a absorbed. Decreasing the temperature will shift the equilibrium to the left, while increasing the temperature will shift the equilibrium to the right forming more of PH3.
- According to Le Chatelier’s principle, adding additional reactant to a system will shift the equilibrium to the right, towards the side of the products. In the same Way, reducing the concentration of the product will also shift equilibrium to the right continually forming PH3 as it is removed.
Protons and neutrons are the sub-atomic particles present in the nucleus of an atom where as electrons are present revolving round the nucleus in orbits. Electrons are negatively charged, protons are positively charged where as a neutron is a neutral species. It is the presence of electric charge that lead to the discovery of electrons (negative charge) and protons (positive charge), while it took time to discover neutral as they were electrically neutral species. Neutrons carrying no charge were not detected easily by passing electromagnetic radiations. Therefore, neutrons were the last of the three subatomic particles, to be discovered.
Answer:

Explanation:
Hello,
Considering the reaction:

The molar masses of chlorine and chloric acid are:

Now, we develop the stoichiometric relationship to find the mass of chloric acid, considering the molar ratio 3:1 between chlorine and chloric acid, as follows:

Best regards.
Initial moles of C₆H₅COOH = 500/1000 × 0.10 = 0.05mol
Initial moles of C₆H₅COONa = 500/1000 × 0.10 = 0.05 mol
initial pH = Pka + log([C₆H₅COONa/ moles of C₆H₅COOH)
4.19 = pKa + log(0.05/0.05)
→pKa = 4.19
C₆H₅COOH + NaOH → C₆H₅COONa ₊ H₂o
moles of NaOH added = 0.010 mol
moles of C₆H₅COOH = 0.05 - 0.025 = 0.025 mol
Final pH = pKa + log([C₆H₅COONa)/[ C₆H₅COOH])
=pKa + log(moles of C₆H₅COONa/moles of C₆H₅COOH)
= 4.19 + log(0.025/0.075)
4.29
Answer:



Explanation:
Every acid (HA) tends to disolve into proton (
) and anion (
) in aqueous solution. Acid strength can be determined by measuring this tendency to separate into proton an anion. Strength of an acid can be quantified by its acid dissociation value - Ka. A strong acid will have a tendency to easily release proton and will have larger Ka value and smaller logarithmic value (pKa = - logKa) similar to calculating pH of the solution. So the easiest way to resolve this issue is by looking for Ka or pKa value of the acid (This table may be useful in more complex tasks and is attached below). However, stronger acid can be determined elsehow.
a) Carbon is element 14 with 4 valent electrons and sulfur is element 16 with 6 valence electrons. Thus, sulfur has stronger electronegativity (tendency to attract bonded electrons towards itself). This means that sulfur will hold oxygen tighter to itself so the hydrogen bond to it can be more easily separated from it.
is more acidic in aqueous solution.
b) In
, phosphorus holds one double bond with oxygen and three OH group equally. To show an acidic tendency, phosphorus would need to let go one hydrogen out of one of OH groups. In
, phosporus holds two double bong with oxygen, one OH and one hydrogen, all single and lonely, ready to leave phosphorus and show acidic characteristics in aqueous solution. Thus,
is more acidic compound.
C) In all Cl acids, the electron density is placed around Cl so the more oxygen around Cl, the more acidic will be the chemical. This is comparable to an oxidation state - the bigger oxidation state, the stronger acid will be:

can reasonably be expected to be more acidic in aqueous solution.