<u>Answer:</u> This illustrates law of conservation of mass.
<u>Explanation:</u>
Dalton's theory is based on mainly two laws which are law of conservation of mass and law of constant proportion.
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The chemical equation for the decomposition of calcium carbonate follows:

We are given:
Mass of calcium carbonate = 100 grams
Mass of calcium oxide = 56 grams
Mass of carbon dioxide = 44 grams
Total mass on reactant side = 100 g
Total mass on product side = 56 + 44 = 100 g
As, the total mass on reactant side is equal to the total mass on product side.
Thus, this illustrates law of conservation of mass.
The pH of a buffer solution : 4.3
<h3>Further explanation</h3>
Given
0.2 mole HCNO
0.8 mole NaCNO
1 L solution
Required
pH buffer
Solution
Acid buffer solutions consist of weak acids HCNO and their salts NaCNO.
![\tt \displaystyle [H^+]=Ka\times\frac{mole\:weak\:acid}{mole\:salt\times valence}](https://tex.z-dn.net/?f=%5Ctt%20%5Cdisplaystyle%20%5BH%5E%2B%5D%3DKa%5Ctimes%5Cfrac%7Bmole%5C%3Aweak%5C%3Aacid%7D%7Bmole%5C%3Asalt%5Ctimes%20valence%7D)
valence according to the amount of salt anion
Input the value :
![\tt \displaystyle [H^+]=2.10^{-4}\times\frac{0.2}{0.8\times 1}\\\\(H^+]=5\times 10^{-5}\\\\pH=5-log~5\\\\pH=4.3](https://tex.z-dn.net/?f=%5Ctt%20%5Cdisplaystyle%20%5BH%5E%2B%5D%3D2.10%5E%7B-4%7D%5Ctimes%5Cfrac%7B0.2%7D%7B0.8%5Ctimes%201%7D%5C%5C%5C%5C%28H%5E%2B%5D%3D5%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5CpH%3D5-log~5%5C%5C%5C%5CpH%3D4.3)
Answer:
- 7.48
Explanation:
Given:
Concentration of the sugar solution, C = 0.3 M
Temperature, T = 27° C = 273 + 27 = 300 K
Now,
The solute potential is given as:
solute potential = - iCRT
where,
i is the number of particles the particular molecule will make in water
i = 1 for sugar
R is the universal gas constant = 0.0831 liter bar/mole-K
on substituting the respective values, we get
solute potential = - 1 × 0.3 × 0.0831 × 300
or
The solute potential = - 7.479 ≈ - 7.48
Answer:The endpoint does not correspond exactly to the equivalence point
At the endpoint, a change in a physical quantity associated with the equivalence point occurs.
At the equivalence point, the mole number of equivalents of reagent added is equal to the mole number of equivalents of analyte present.
Explanation:
The end point is always indicated by some physical property that changes such as colour. At the equivalence point, the mole number of equivalents of reagent added is equal to the mole number of equivalents of analyte present. The equivalence point cannot be physically observed but can be deduced after a titration curve is plotted.
Given:
magnesium = 0.941 gram piece
Magnesium oxide= 1.560 grams
Formula:
(magnesium / magnesium oxide) x 100 = % Mg
100% - % Mg = percent composition of each element
Solution:
(0.941g Mg) / (1.560g MgO)
= 0.603
= 60.3% Mg
100% - 60.3%
= 39.7%
39.7% is the percentage composition of each element.