Answer:
Explanation:
Ketcher 01232019462D 1 1.00000 0.00000 0 5 4 0 0 0 999 V2000 -0.0330 2.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 0.8330 2.7250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1.6990 2.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 0.8330 3.7250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1.6990 1.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 2 3 1 0 0 0 2 4 1 0 0 0 3 5 1 0 0 0 M END
First of all, there are five types of solid materials:
Metallic solids which are solids composed of metal atoms that are held together by metallic bonds.
Network solid is a chemical compound in which the atoms are bonded by covalent bonds in a continuous network extending throughout the material.
Molecular solid is a solid consisting of discrete molecules.
Ionic solid is a chemical compound composed of ions held together by electrostatic forces termed ionic bonding.
Amorphous solid is non-crystalline solid that lacks the long-range order that is characteristic of a crystal.
Now, after the defined all the types of solid materials in the equation lets to solve it.
A. the answer is the network solids, because covalent bonds are relatively strong, covalent are typically characterized by hardness, strength, and high melting points.
B. the answer is the metallic solids, due to that heat conduction occurs when a substance is heated and the particles will gain more energy vibrating more. These molecules then bump into nearby particles and transfer some of their energy to them and in metals this process have a higher probability than in the case of other solids due to the nature of the chemical bonds. It also has a range of hardness due to the strength of metallic bonds which varies dramatically.
C. the answer is the ionic solid; due to positive and negative ions which are bonded to form a crystalline solid held together by charge attractions.
Answer 1) : The density of the hot air inside the balloon can be found out by using ideal gas equation;
PV = nRT;
As n is number of moles and in gases, number of moles along with mass per mole is equal to the density of the gas.
If the moles in the gas are more the density will be more.
here, density (ρ) = mass (m) / volume (V); substituting in the ideal gas equation we get,
ρ = mP / RT
Answer 2) ρ (hot air) = ρ (cold air) X
Here according to the formula because T(hot air) >T(cold air),
So, the density of hot air greater than the density of cold air.
The relationship between the ρ (h) = ρ(c) X
Answer:

Explanation:
Hello,
In this case, we apply the Gay-Lussac's law which allows us to understand the pressure-temperature behavior as a directly proportional relationship:

Thus, we solve for the final pressure P2 to obtain it as shown below:

Hence, we notice that the temperature doubles as well as the pressure.
Best regards.
The calculation for the amount of water present in the given amount of hydrate is shown below,
amount water = (100 g hydrate) x (0.347 g H2O / 0.946 g hydrate)
= 36.68 g
Thus, the amount of water present in the hydrate is approximately 36.68 g.