<span>Salts are formed by the reaction of bases with water. - FALSE
</span><span>Most salts are ionic and are soluble in water. - TRUE
</span><span>Most salts are insoluble in water and lack electrical charges. - FALSE
</span><span>Solutions of salt and water do not conduct electricity. - FALSE
:)</span>
Bohr's atomic model may have not been the accurate atomic model we have in the present, but he helped paved the way for accurate discoveries. His model is also called the planetary model. The nucleus, containing the neutrons and protons are situated at the center of the atom. The electrons are orbiting around the nucleus. The model is illustrated as shown in the attached picture.
Answer:
<h2>1. Ionic compound-

</h2><h2>2. Polar molecular compound-

</h2>
Explanation:
Mg is a metal that has 12 atomic numbers and thus its electronic configuration is
. The outer most shell of this element has 2 electrons so it loses 2 electrons and thus form
ions. Br is a nonmetal and has 35 atomic number so its electronic configuration is
. Since its outermost shell has 7 electrons so it can accept one electron and thus forms
. So magnesium ion and bromide ion combine and forms an ionic compound
.
P is also a nonmetal and combine with Br with covalent bond and due to electronegativity differences form polar covalent compound such as
.
Full Question:
A flask containing 420 Ml of 0.450 M HBr was accidentally knocked to the floor.?
How many grams of K2CO3 would you need to put on the spill to neutralize the acid according to the following equation?
2HBr(aq)+K2CO3(aq) ---> 2KBr(aq) + CO1(g) + H2O(l)
Answer:
13.1 g K2CO3 required to neutralize spill
Explanation:
2HBr(aq) + K2CO3(aq) → 2KBr(aq) + CO2(g) + H2O(l)
Number of moles = Volume * Molar Concentration
moles HBr= 0.42L x .45 M= 0.189 moles HBr
From the stoichiometry of the reaction;
1 mole of K2CO3 reacts with 2 moles of HBr
1 mole = 2 mole
x mole = 0.189
x = 0.189 / 2 = 0.0945 moles
Mass = Number of moles * Molar mass
Mass = 0.0945 * 138.21 = 13.1 g
<span>Heat
gained or absorbed in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. The heat capacity of aluminum at 25 degrees celsius is 0.9 J/g-C. It is
expressed as follows:</span><span>
Heat = mC(T2-T1)
5800 J = 152000(0.90)(</span>ΔT)
ΔT = 0.42 °C change in temperature