Answer: The reaction is not at equilibrium and will proceed to make more products to reach equilibrium.
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as
K is the constant of a certain reaction when it is in equilibrium, while Q is the reaction quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For the given chemical reaction:
The expression for
is written as:
Given :
= 54.8
Thus as
, the reaction will shift towards the right i.e. towards the product side.
Answer:
100g/mol
Explanation:
Given parameters:
Mass of unknown gas = 2g
Volume of gas in flask = 500mL = 0.5dm³
Unknown:
Molar mass of gas = ?
Solution:
Since we know the gas is at STP;
1 mole of substance occupies 22.4dm³ of space at STP
Therefore,
0.5dm³ will have 0.02mole at STP
Now;
Number of moles =
Molar mass =
=
= 100g/mol
Hydrogen bonds are approximately 5% of the bond strength of covalent C-C or C-H bonds.
Hydrogen bonds strength in water is approximately 20 kJ/mol, strenght of carbon-carbon bond is approximately 350 kJ/mol and strengh of carbon-hydrogen bond is approximately 340 kJ/mol.
20 kJ/350 kJ = 0,057 = 5,7 %.
Explanation:
According to Charle's law, at constant pressure the volume of an ideal gas is directly proportional to the temperature.
That is, 
Hence, it is given that
is 3.50 liters,
is 20 degree celsius, and
is 100 degree celsius.
Therefore, calculate
as follows.


= 17.5 liter
Thus, we can conclude that volume of gas required at 100 degree celsius is 17.5 liter.