Hey there !
Molar mass carbon dioxide:
CO2 = 44.01 g/mol
1) number of moles :
1 mole CO2 ------------- 44.01 g
(moles CO2) ------------ 243.6 g
moles CO2 = 243.6 * 1 / 44.01
moles CO2 = 243.6 / 44.01
=> 5.535 moles of CO2
Therefore:
1 mole -------------------- 6.02x10²³ molecules
5.535 moles ------------ ( molecules CO2)
molecules CO2 = 5.535 * ( 6.02x10²³) / 1
=> 3.33x10²⁴ molecules of CO2
Thee question is incomplete; the complete question is;
Which elements do not strictly follow the octet rule when they appear in the Lewis structure of a molecule?
Select one or more:
A: Chlorine
B: Carbon
C: Hydrogen
D: Sulfur
E: Fluorine
F: Oxygen
Answer:
chlorine
sulphur
Explanation:
The octet rule states that, for atoms to be stable, they must have eight electrons on their outermost shells.
This rule is not strictly followed by some elements such as sulphur and chlorine. The atoms of these elements can sometimes expand their octet by utilizing the d-orbitals found in the third principal energy level and beyond.
These leads to formation of compounds in which the central atom has more than eight electrons in its outermost shell.
Answer : The pressure in the flask after reaction complete is, 2.4 atm
Explanation :
To calculate the pressure in the flask after reaction is complete we are using ideal gas equation.

where,
P = final pressure in the flask = ?
R = gas constant = 0.0821 L.atm/mol.K
T = temperature = 
V = volume = 4.0 L
= moles of
= 0.20 mol
= moles of
= 0.20 mol
Now put all the given values in the above expression, we get:


Thus, the pressure in the flask after reaction complete is, 2.4 atm
Explanation:
Half life is simply the amount of time it takes for half of a substance to decompose.
Options;
- Carbon-14 has a half-life of 5,730 years. A 30 gram sample will be 10 grams after 5,730 years. This is incorrect. After 5730 years, 15g of the sample ought to remain.
- Nickel-59 has a half-life of 76,000 years. A sample would go through 3 half-lives in 228,000 years. This is correct. 3 * 76000 = 228,000
- Hafnium-182 has a half-life of 9 million years. A 38 gram sample would be 4.75 grams in 27 million years. This is incorrect. Mass after 3 half lives (27/9) = 9.5 (38 / 2 / 2)
- Iron-60 has a half-life of 1.5 million years. In 6 million years a 40 gram sample would be reduced to 10 grams. This is incorrect. Mass after 4 half lives (6 / 1.5) = 2.5 gram (40 / 2 / 2 /2 / 2)
- Lead-202 has a half-life of 52,500 years. The original sample must have been 120 grams if you have a 60 gram sample after 105,000 years. This is incorrect. Original sampe = 240 gram. So after 2 half lives (105,000/52500), mass left = 60 (240 / 2 /2)
Using charles law
v1/t1=v2/t2
v1=49ml
v2=74
t1=7+273=280k
t2=?
49/280=74/t2
0.175=74/t2 cross multiply
0.175t2=74
t2=74/0.175
t2=422k or 149celcius