Here, the three different notation of the p-orbital in different sub-level have to generate
The value of azimuthal quantum number (l) for -p orbital is 1. We know that the magnetic quantum number
depends upon the value of l, which are -l to +l.
Thus for p-orbital the possible magnetic quantum numbers are- -1, 0, +1. So there will be three orbitals for p orbitals, which are designated as
,
and
in space.
The three p-orbital can be distinguish by the quantum numbers as-
For 2p orbitals (principal quantum number is 2)
1) n = 2, l = 1, m = -1
2) n = 2, l = 1, m = 0
3) n = 2, l = 1, m = +1
Thus the notation of different p-orbitals in the sub level are determined.
Answer:
Two non bonded electron pairs and four bonded electron pairs
Explanation:
An image of the compound as obtained from chemlibretext is attached to this answer.
The ion ICl4- ion, is an AX4E2 ion. This implies that there are four bond pairs and two lone pairs of electrons. As expected, the shape of the ion is square planar since the lone pairs are found above and below the plane of the square. This is clear from the image attached.
Answer:
-1273.3
Explanation:
Enthalpy of formation of a compound is the amount of heat absorbed or evolved when one mole of the compound is formed from other compounds.
enthalpy of formation Of CO2 = 2 X -393.5 = -787
enthalpy of formation Of C2H5OH = 2 X -277.7 = -555.4
enthalpy of formation Of C6H12O6 = 69.1 (reverse sign) + (-787 + -555.4) = - 1273.3 Joules
1. What do they have in common?
As mentioned in the problem, these gases are present in equal amounts. So, that would infer that they are common in terms of their mass. Also, it is specified that the temperature is 25°C. Connected to that is the average kinetic energy, which is directly proportional. Hence, they are also common in temperature and average kinetic energy.
2. What are the differences?
They differ in type, of course. Also, they differ in average velocities which is a factor of temperature of molar mass. Since they are 3 different types of gases with different molar masses, they would also differ in their average velocities.
<span> Mg(OH)2(s) + 2HCl(aq) yield MgCl2(aq) + 2H2O(l)
grams HCl required = (50.6 grams Mg(OH)2) * (1 mol Mg(OH)2 / 58.3197 grams Mg(OH)2) * (2 mol HCl / 1 mol Mg(OH)2) * (36.453 grams HCl / 1 mol HCl) = 63.26 grams HCl required
Since there are only 45.0 grams HCl, then HCl is the limiting reactant.
theoretical yield MgCl2 = (45.0 grams HCl) * (1 mol HCl / 36.453 grams HCl) * (1 mol MgCl2 / 2 mol HCl) * (95.211 grams MgCl2 / 1 mol MgCl2) = 58.6 grams MgCl2 </span>