Mixing of pure orbitals having nearly equal energy to form equal number of completely new orbitals is said to be hybridization.
For the compound,
the electronic configuration of the atoms, carbon and hydrogen are:
Carbon (atomic number=6): In ground state= 
In excited state: 
Hydrogen (atomic number=1): 
All the bonds in the compound is single bond(
-bond) that is they are formed by head on collision of the orbitals.
The structure of the compound is shown in the image.
The Carbon-Hydrogen bond is formed by overlapping of s-orbital of hydrogen to p-orbital of carbon.
In order to complete the octet the required number of electrons for carbon is 4 and for hydrogen is 1. So, the electron in
of hydrogen will overlap to the 2p^{3}-orbital of carbon.
Thus, the hybridization of Hydrogen is
-hybridization and the hybridization of Carbon is
-hybridization.
The hybridization of each atom is shown in the image.
Amines are derivatives of
Ammonia (NH₃) in which atleast one hydrogen atom is replaced by an alkyl group. Amines are further classifies as;
Primary Amines: In primary amines the nitrogen atom is attached to two hydrogen atoms and one alkyl group.
Secondary Amines: In secondary amines the nitrogen atom is attached to two alkyl groups and one hydrogen atom.
Tertiary Amines: In tertiary amines the nitrogen atom is attached to three alkyl groups, hence it has no hydrogen atom.
Below are three isomers of tertiary amines with molecular formula
C₅H₁₃N.
The easy part about this question is that it already gives you the equation to use. If you're trying to find the weight in g/cm^3, all you have to do is divide the weight in grams (g) by the volume in cubic centimeters (cm^3).
The problem already gives you the volume, so you just need to convert kilograms (kg) into grams (g).
Hint: "kilogram" means 1000 grams. There are 1,000 grams in each kilogram.
So find the weight of the object in grams, then divide that number by the volume in cm^3.
<span>Actually, the heat of reaction hrxn s calculated by taking
the sum of the heats of formation of the products minus the sum of the heats of
formation of the reactants. However, at heat of formations of pure elements at
atmospheric conditions is zero, therefore the hf of N2 is not important since
it is zero anyway.</span>
Hybridization refers to the mixing of atomic orbitals in an atom. The number of hybrid orbitals needs to be equal to the number of orbitals that have involved in prior to mixing.
The isolated atoms cannot prevail in a hybridized state as the atom in an isolated state do not form any kind of bond with the other atom, due to which the atomic orbitals do not go through the process of hybridization.