Mole ratio for the reaction is 1:1
no of moles in NaOH that reacted= 1*21.17/1000=0.02117mols
molarity of HCl=0.02117*10/1000
=2.117M
Using a more concentrated HCl solution and Crushing the CaCO₃ into a fine powder makes the reaction to occur at a faster rate.
<u>Explanation:</u>
CaCO₃(s) + 2HCl(aq) → CaCl₂(aq) + H₂O(aq) + CO₂(g)
When calcium carbonate reacts with hydrochloric acid, it gives out carbon-dioxide in the form of bubbles and there is a formation of calcium chloride in aqueous medium.
The rate of the reaction can be increased by
- Using a more concentrated HCl solution
- Crushing the CaCO₃ into a fine powder
When concentrated acid is used instead of dilute acid then the reaction will occur at a faster rate.
When CaCO₃ is crushed into a fine powder then the surface area will increases thereby increasing the rate of the reaction.
<span>biological reactions that happen within cells while reducing the complex interactions found in a whole cell. Eukaryotic and prokaryotic cells have been used for creation of these simplified environments[1]. Subcellular fractions can be isolated by ultracentrifugation to provide molecular machinery that can be used in reactions in the absence of many of the other cellular components.
Cell-free biosystems can be prepared by mixing a number of purified enzymes and coenzymes. Cell-free biosystems are proposed as a new low-cost biomanufacturing platform compared to microbial fermentation used for thousands of years. Cell-free biosystems have several advantages suitable in industrial applications</span>
Answer:
The reagents are
.
Explanation:
1-Methylenecyclopentene is treated with HBr form 1-bromo-1-methylcyclopentane, which is treated with strong base ethoxide ion and forms 1-methylcyclopent-1-ene.
This alkene is treated with osmium tetraoxide in the presence of sodium bisulfite to form target product.
The chemical reaction is as follows.
Answer:
Moles of KOH in 1000 mL solution = 0.255 moles
Moles of KOH in 1 mL solution = 0.255/1000 = 0.000255 moles
Moles in 95 mL solution = (95 * 255)/1000000 = 24225/1000000
Moles of KOH in 95 mL 0.255M solution = 0.024225 moles