<span>In order to do this, you have change the alkene into an
alkyne. That is the aim of Br2/CH2Cl2 trailed by NaNH2. The Br2 with form a vic
dihalide (3,4-dibromo octane). Adding of NaNH2 will execute two E2 reactions.
-NH2 will eliminate an H from carbons 3 and 4. This double elimination will make
the alkyne. Then handling the alkyne with H2/Lindlar will form the cis alkene. The
final product will be CIS-3-octene.</span>
Convert grams —> mols and then mols —> atoms
We know that there are 6.02 x 10^23 atoms/mol
And we know that there are about 160 grams of fe2o3 per mol
So (79g fe2o3)/(160 g/mol) = .49 mol fe2o3
Now we use avogadro’s number to do
(.49 mol fe2o3)/(6.02 x 10^23 atoms/mol) = the answer.
I’ll leave the easy math to you.
Answer:
The partial pressure of SO₃ is 82.0 atm
Explanation:
The equilibrium constant Kp is equal to <em>the equilibrium pressure of the gaseous products raised to the power of their stoichiometric coefficients divided by the equilibrium pressure of the gaseous reactants raised to the power of their stoichiometric coefficients</em>.
For the reaction,
2 SO₂(g) + O₂(g) → 2 SO₃(g)
![Kp = 0.345 = \frac{(pSO_{3})^{2} }{(pSO_{2})^{2} \times pO_{2} }\\pSO_{3} = \sqrt[]{0.345 \times (pSO_{2})^{2} \times pO_{2} } \\pSO_{3} = \sqrt[]{0.345 \times (35.0)^{2} \times 15.9 } \\pSO_{3} = 82.0 atm](https://tex.z-dn.net/?f=Kp%20%3D%200.345%20%3D%20%5Cfrac%7B%28pSO_%7B3%7D%29%5E%7B2%7D%20%7D%7B%28pSO_%7B2%7D%29%5E%7B2%7D%20%5Ctimes%20pO_%7B2%7D%20%7D%5C%5CpSO_%7B3%7D%20%3D%20%5Csqrt%5B%5D%7B0.345%20%5Ctimes%20%28pSO_%7B2%7D%29%5E%7B2%7D%20%5Ctimes%20pO_%7B2%7D%20%7D%20%5C%5CpSO_%7B3%7D%20%3D%20%5Csqrt%5B%5D%7B0.345%20%5Ctimes%20%2835.0%29%5E%7B2%7D%20%5Ctimes%2015.9%20%7D%20%5C%5CpSO_%7B3%7D%20%3D%2082.0%20atm)
Answer:
Explanation:
wavelength λ = 12.4 x 10⁻² m .
energy of one photon = h c / λ
= 6.6 x 10⁻³⁴ x 3 x 10⁸ / 12.4 x 10⁻²
= 1.6 x 10⁻²⁴ J .
Let density of coffee be equal to density of water .
mass of coffee = 255 x 1 = 255 g
heat required to heat up coffee = mass x specific heat x rise in temp
= 255 x 4.18 x ( 62-25 )
= 39438.3 J .
No of photons required = heat energy required / energy of one photon
= 39438.3 / 1.6 x 10⁻²⁴
= 24649 x 10²⁴
= 24.65 x 10²⁷ .
Concept:
<em><u>Latent Heat of Vaporization</u></em>: It is defined as the amount of heat required to change the state of mater without changing of its temperature.
From the given question, the temperature at the boiling point remained constant despite the continued addition of heat by the Bunsen burner. <em>Actually,</em> this amount of heat is used by water to break the intermolecular bonds between the water molecules in the form of latent heat that converts the liquid state of water into vapor state of water.
Hence, the correct option will be d.<u>The energy was used to break the intermolecular bonds between the water molecules. </u>