Given:
E = 7.3 × 10–17 Hz
h= 6.63 × 10–34 J•s
Now <em>E = hf</em>
where E is the energy of the photon
h is the Planck's constant
f is the frequency of the photon
Substituting the values in the equation we get
E= 7.3 × 10^-17 × 6.63 × 10^-34
<u>E= 4.8399 × 10^-50 J. </u>
You did not include the options but I can tell you the product ratio.
The product ratio is the mole ratio of the products of the reaction.
From the balanced chemical equation you have all the mole ratios:
The given equation is: 2 C6H5COOH + 15O2 --> 14 CO2 + 6H2O
The mole ratios are: 2 C6H5COOH: 15 O2: 14 CO2 : 6 H2O
The products are CO2 and H2O
Their mole ratio = 14 CO2 : 6 H2O
That can be expressed as:
14 mol CO2 7 mol CO2
----------------- = -----------------
6 mol H2O 3 mol H2O
It is also the same that:
6 mol H2O : 14 mol CO2
6 mol H2O 3 mol H2O
------------------ = -------------------
14 mol CO2 7 mol CO2
So, compare your options to the ratios show above and pick the proper ratio.
Answer: 3 <span>moles of water would be produced in present case.
</span>
Reason:
Reaction involved in present case is:
<span> C5H12 + 8O2 </span>→<span> 5CO2 + 6H2O
In above reaction, 1 mole of C5H12 reacts with 8 moles of oxygen to give 6 moles of water.
Thus, 4 moles of oxygen will react with 0.5 mole of C5H12, to generate 3 moles of H2O.</span>
In given data:
maximum absorption wavelength λ = 580 nm = 580 x 10⁻⁹ m
write the equation to find the crystal field splitting energy:
E = hC / λ
Here, E is the crystal field splitting energy, h = 6.63 x 10⁻³⁴ J.sec is Planck's constant and C = 3 x 10⁸ m/sec is speed of light.
substitute in the equation above:
E = (6.64 x 10⁻³⁴ x 3 x 10⁸) / (580 x 10⁻⁹) = 3.43 x 10⁻¹⁹J
This crystal field splitting energy is for 1 ion.
Number of atoms in one mole, NA = 6.023 x 10²³
to calculate the crystal field splitting energy for one mole:
E(total) = E x NA
= (3.43 x 10⁻¹⁹) x (6.023 x 10²³) = 206 kJ/ mole
Answer:
C₂H₇F₂P
Explanation:
Given parameters:
Composition by mass:
C = 24%
H = 7%
F = 38%
P = 31%
Unknown:
Empirical formula of compound;
Solution :
The empirical formula is the simplest formula of a compound. To solve for this, follow the process below;
C H F P
% composition
by mass 24 7 38 31
Molar mass 12 1 19 31
Number of
moles 24/12 7/1 38/19 31/31
2 7 2 1
Dividing
by the
smallest 2/1 7/1 2/1 1/1
2 7 2 1
Empirical formula C₂H₇F₂P