Given:
Mass, m = 51.1 g
Volume, V = 6.63 cm³
By definition,
Density = Mass/Volume
= (51.1 g)/(6.63 cm³)
= 7.7074 g/cm³
In SI units,
Density = (7.7074 g/cm³)*(10⁻³ kg/g)*(10² cm/m)³
= 7707.4 kg/m³
Answer: 7.707 g/cm³ or 7707.4 kg/m³
Answer:
Because milk has higher KE than ice, KE is transferred from the milk to the molecules of ice.
Explanation:
The best statement that expresses the transfer of kinetic energy(K.E) is that kinetic energy is transferred from the milk to the ice.
Kinetic energy is form of energy due to motion of the particles of a medium. In this regard, we are dealing with heat energy.
- Heat energy is dissipated from a body at higher temperature to one at a lower temperature.
- Ice is at a lower temperature which is 0°C
- Heat will be transferred in form of thermal energy from the body at higher temperature to one with a lower temperature.
- This is from the milk to the molecules of ice.
Answer : The Lewis-dot structure and resonating structure of
is shown below.
Explanation :
Resonance structure : Resonance structure is an alternating method or way of drawing a Lewis-dot structure for a compound.
Resonance structure is defined as any of two or more possible structures of the compound. These structures have the identical geometry but have different arrangements of the paired electrons. Thus, we can say that the resonating structure are just the way of representing the same molecule.
First we have to determine the Lewis-dot structure of
.
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is, 
As we know that carbon has '4' valence electrons, nitrogen has '5' valence electrons and hydrogen has '1' valence electrons.
Therefore, the total number of valence electrons in
= 4 + 2(1) + 2(5) = 16
Now we have to determine the formal charge for each atom.
Formula for formal charge :

For structure 1 :



For structure 2 :



Answer: Option (d) is the correct answer.
Explanation:
The given data is as follows.
Tube diameter d = 10 mm = 0.01 m
Velocity of glycerol, v = 0.5 m/s
Density of glycerol (
) = 1240 kg/m3
Dynamic viscosity of glycerol (
) = 0.0813 pa.s
Reynolds number (Re) =
=
= 76.26
Therefore, according to Reynolds number we can say that flow is laminar.
Lt =
=
=
As it is known that 1 m = 1000 mm. Hence, in 0.03813 m will be equal to 
= 38.13 mm
Thus, we can conclude that the transition length of glycerol is 38.13 mm.
The location of the valence electron or the outermost electron is expressed in quantum numbers. There are five quantum numbers: prinicipal (n), angular momentum (l), magnetic (ms) and magnetic spin (ms) quantum numbers. This is based on Bohr's atomic model where electrons orbit around the nucleus. These electrons are in the orbitals with specific energy levels. Starting from energy level 1 that is closest to the nucleus, the energy level decreases to 2, 3, 4, 5, 6, and 7. These energy level numbers represent the principal quantum number. Within each orbital also contains subshell. From increasing to decreasing order, these subshells are the s, p, d and f subshells. These subshells represent the angular momentum quantum numer. Specifically, s=0, p=1, d=2 and f=3. Therefore, if the electron is in the orbital 5p, the quantum number would be: 5, 1. Applying these to the choices, the correct pairing would be:
2p: n=2. l=1
3d: n=3, l=2
2s: n=2. l=0
4f: n=4. l=3
1s: n=1, l=0