Answer:
At the burner temp. and pressure, 18.85 litres of air is needed to completely combust each gram of propane
Explanation:
The combustion stoichiometry is as follows:
C₃H₈ + 5O₂ = 4 H₂O + 3CO₂ The molecular weights (g/mol) are:
MW 44 5x32 4x18 3x44
So each gram of propane is 1/44 = 0.02272 mol propane
and will need 5 x 0.02272 = 0.1136 mol oxygen
At 0.21 mol fraction oxygen in air, 0.1136 / 0.21 = 0.54 mol air is needed to burn the propane.
At the low pressure in the burner we can use the Ideal Gas Law
PV=nRT, or V = nRT/P
P = 1.1 x 101325 Pa = 111457 Pa
T = 195°C + 273 = 468 K
R = 8.314
and we calculated n = number of moles air = 0.54 mol
So V m³ = 0.54 x 8.314 x 468 / 111457 = 0.0188 m³ = 18.85 litres air.
Answer:
Increasing the volume of the vessel
Explanation:
By the Le Chatelier's principle, if a system in equilibrium suffer a variation that disturbs the equilibriu, the reaction shift in the way to minimize the pertubation and re-establish the equilibrium.
For a variation in pressure, when it increases, the reaction shift for the smallest of gas volume, and if decreases, the reaction will shift for the large gas volume. So, for the reaction given, the products have the large amount of gas, so by decreasing the pressure, more products will be formed, and the amount of NH₄HS will reduce. To decrease the pressure, we can increase the volume of the vessel: for the ideal gas equation (PV= nRT), pressure and volume are indirectly proportional.
Answer:
1219.5 kj/mol
Explanation:
To reach this result, you must use the formula:
ΔHºrxn = Σn * (BE reactant) - Σn * (BE product)
ΔHºrxn = [1 * (BE C = C) + 2 * (BE C-H) + 5/2 * (BE O = O)] - [4 * (BE C = O) + 2 * (BE O-H).
The BE values are:
BE C = C: 839 kj / mol
BE C-H: 413 Kj / mol
BE O = O: 495 kj / mol
BE C = O = 799 Kj / mol
BE O-H = 463 kj / mol
Now you must replace the values in the above equation, the result of which will be:
ΔHºrxn = [1 * 839 + 2 * (413) + 5/2 * (495)] - [4 * (799) + 2 * (463) = 1219.5 kj/mol
Answer:
The rate law may be determined only by experiment.
Explanation:
For a reaction, A + B ---> C, the rate law can only be determined from experimental data. Chemists determine the rate of reaction by carefully observing the changes in the concentration of species as the reaction progresses.
Hence, the rate law is not determined by inspection of the chemical reaction equation, it must be obtained from the experimental data, hence the answer given.
solution:
Hydration is the addition of water; hydrogenation is the addition of hydrogen.
desire rxn: _C4H6(g) + 2 H2(g)-----> C4H10(g)___dHhy = ??
knowns:
__________C4H6 + 11/2 O2 --------> 4CO2 + 3H2O______dHox = -2540.2 kJ/mole
__________4CO2 + 5H2O -----------> C4H10 + 13/2 O2___-dHox = 2877.6 kJ/mole
___________2(1/2 O2 + H2 -------------> H2O)___________2*dHox = 2(-285.8 kJ/mole)
Basic mathematics is a prerequisite to chemistry – I just try to help you with the methodology of solving the problem