Answer:
Mitochondria are abundantly present in mammalian cells. Their fraction varies from tissue to tissue, ranging from <1% (volume) in white blood cells to 35% in heart muscle cells. However, mitochondria should not be thought of as single entities, but rather a dynamic network that continuously undergoes fission and fusion processes. In skeletal muscle, mitochondria exist as a reticular membrane network. The subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria are located in distinct subcellular regions, and they possess subtle differences in biochemical and functional properties that are characterized by their anatomical locations. SS mitochondria lie directly beneath the sarcolemmal membrane and the IMF mitochondria are located in close contact with the myofibril. Their different properties are likely to influence their capacity for adaptation. SS mitochondria account for 10-15% of the mitochondrial volume and this population has been shown to be more susceptible to adaptation than the IMF mitochondria. However, the IMF mitochondria were found to have higher rates of protein synthesises, enzyme activities and respiration (1).
Explanation:
Answer:
4 g after 58.2 years
0.0156 After 291 years
Explanation:
Given data:
Half-life of strontium-90 = 29.1 years
Initially present: 16g
mass present after 58.2 years =?
Mass present after 291 years =?
Solution:
Formula:
how much mass remains =1/ 2n (original mass) ……… (1)
Where “n” is the number of half lives
to find n
For 58.2 years
n = 58.2 years /29.1 years
n= 2
or 291 years
n = 291 years /29.1 years
n= 10
Put values in equation (1)
Mass after 58.2 years
mass remains =1/ 22 (16g)
mass remains =1/ 4 (16g)
mass remains = 4g
Mass after 58.2 years
mass remains =1/ 210 (16g)
mass remains =1/ 1024 (16g)
mass remains = 0.0156g
Answer:
From highest to lowest:
butanol: 117.7 degree Celsius
butanone: 79.64 degree Celsius
diethyl ether: 34.6 degree Celsius
n-butane: -0.4 degree Celsius
Answer:
2 only
Explanation:
Electrons are filled in atoms according to the Aufbau principle. Electrons are filled into lower energy orbital before the filling of higher energy orbitals and this sequence must be followed in filling electron orbitals.
The order of arrangement of energy levels may be shown as follows; 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p. This implies that 4f>6s, hence 6s is filled before 4f.
Also, the 6p level > 5d level hence this is the correct option. You must fill the 5d level before you feel the 6p level.