The answer is
<span>The density (D) is quotient of mass (m) and
volume (V):
</span>

The unit is g/cm³
It is given:
m = 1.62 kg = 1620 g
V = 205 mL = 205 cm³
D = ?
Thus:

The density of the goblet is 7.90 g/cm³.
According to Arrhenius theory, acid is a substance that releases H⁺ ions when dissolved in water.
In order to apply this theory, the substance must be soluble in water.
H₂SO₄ is highly soluble in water. It undergoes following dissociation reaction when dissolved in water.

From the above equation, we can see that H₂SO₄ forms 2 H⁺ ions when dissolved in water. Therefore it behaves as an acid according to Arrhenius theory.
Answer:
ΔH = -976.5 kJ
Explanation:
For the reaction given, there are 2 moles of benzene (C6H6). The heat of this reaction is -6278 kJ, which means that the combustion of 2 moles of benzene will lose 6278 kJ of heat. It is an exothermic reaction.
The value of ΔH, the enthalpy, is a way of measurement of the heat, and it depends on the quantity of the matter (number of moles).
So, 24.3 g of benzene has :
n = mass/ molar mass
n = 24.3/78.11
n = 0.311 moles
2 moles ------------ -6278 kJ
0.311 moles ----------- x
By a simple direct three rule:
2x = -1953.08
x = -976.5 kJ
There is an exact value for the standard volume at standard conditions of 1 atm and 273 K. This standard volume for any ideal gas is 22.4 L/mol. Thus,
Moles SO₂ = 5.9 L * 1 mol/22.4 L = 0.263 mol
The molar mass for SO₂ is 64.066 g/mol. So, the mass is:
Mass = 0.263 mol * 64.066 g/mol = <em>16.87 g SO₂</em>