Answer:
Water moves into the cell
Explanation:
As shown in the question above, the cell is high in glucose and placed in a glass filled with water. This cell has a semi permeable membrane that allows only water to pass through, as the concentration of water within the cell is low, the cell will attempt to strike a balance with the medium it is inserted into. For this reason, what is likely to happen is the passage of water from the most concentrated to the least concentrated medium, that is, the water will pass from the cup to the cell.
water moves into the cell through osmosis.during osmosis water moves from a region of low concentration of solute to a region of high concentration of solute.the glucose introduced into the cell makes it more concentrated.
In this case the cell is hypertonic and water would enter into the cell through the semi permeable membrane.this membrane allows water to pass through but not glucose.this movement of water into the cell causes the cell to become turgid.
Tetraphosphorus Decaoxide has a molecular formula of P4O10,
all else are known. Therefore the balanced chemical equation would be:
4PH3 + 8O2 --> 6H2O + P4O10
Taking into account the phases:
4PH3(g) + 8O2(g) --> 6H2O(g) + P4O10(s)
Answer:
Less than
Explanation:
The process of dissolution occurs as a kind of "tug of war". On one side are the solute-solute and solvent-solvent interaction forces, while on the other side are the solute-solvent forces.
Only when the solute-solvent forces are strong enough to overcome the pre-mixing forces do they overcome the "tug of war", and thus dissolution occurs.
Thus, it is concluded that the interaction forces between solute particles and solvent particles before they are combined are less than the interaction forces after dissolution.
Cadmium chloride is a highly soluble compound. The equation for its dissolution is:
CdCl₂(s) → Cd⁺²(aq) + 2Cl⁻(aq)
This dissociation in water allows for the cadmium and chlorine ions to take part in reactions. This is the reason that solutions of chemicals are prepared when a reaction needs to take place.