Answer:
amino group
Explanation:
There are twenty (20) amino acids in nature. Generally, each amino acid is structurally made up of a central carbon atom called alpha carbon attached to a hydrogen, carboxylic acid group (-COOH) and an amine group (-NH2). However, one particular amino acid called PROLINE posseses an exception to this.
Proline, which is the only cyclic amino acid, is also the only amino acid that forms a secondary amine group i.e. loss of hydrogen atoms in its amine group when in a protein structure. This means that when in a protein, PROLINE does not have an AMINE GROUP.
Answer:
Option c → Tert-butanol
Explanation:
To solve this, you have to apply the concept of colligative property. In this case, freezing point depression.
The formula is:
ΔT = Kf . m . i
When we add particles of a certain solute, temperature of freezing of a solution will be lower thant the pure solvent.
i = Van't Hoff factor (ions particles that are dissolved in the solution)
At this case, the solute is nonvolatile, so i values 1.
ΔT = Difference between fussion T° of pure solvent - fussion T° of solution.
T° fussion paradichlorobenzene = 56 °C
T° fussion water = 0°
T° fussion tert-butanol = 25°
Water has the lowest fussion temperature and the paradichlorobenzene has the highest Kf. But the the terbutanol, has the highest Kf so this solvent will have the largest change in freezing point, when all the molalities are the same.
Answer:
V2 = 6616 L
Explanation:
From the question;
Initial volume = 40L
Initial Pressure, P1 = 159atm
Initial Temperature T1 = 25 + 273 = 298K (Upon converting to Kelvin unit)
Final Volume, V2 = ?
Final Pressure, P2 = 1 atm
Final Temperature T2 = 37 + 273= 310K (Upon converting to Kelvin unit)
These quantities are related by the equation;
P1V1 / T1 = P2V2 / T2
V2 = T2 * P1 * V1 / T1 * P2
V2 = 310 * 159 * 40 / (298 * 1)
V2 = 6616 L
Answer and Explanation:
Iodine have lower atomic mass than tellurium even though the atomic number of iodine is more than the atomic number of tellurium
This is because the atomic weight of any element is the sum of number of proton and number of neutron, even though the number of proton in iodine is more so but the number of neutron is less as compared to tellurium which makes the tellurium of high atomic mass