The total energy can be found by adding the different energies:
628 + 15,600 + 712
= 16.94 kJ
<span>08 moles Li3N * 1mole N2/2moles Li3N = 0.04 </span>
to the proper number of significant figures) to the following? (12.67+19.2)(3.99)/(1.36+ 11.366).
Answer:
x= 138.24 g
Explanation:
We use the avogradro's number
6.023 x 10^23 molecules -> 1 mol C2H8
26.02 x 10^23 molecules -> x
x= (26.02 x 10^23 molecules * 1 mol C2H8 )/6.023 x 10^23 molecules
x= 4.32 mol C2H8
1 mol C2H8 -> 32 g
4.32 mol C2H8 -> x
x= (4.32 mol C2H8 * 32 g)/ 1 mol C2H8
x= 138.24 g
Answer: 0.0007 moles of
is released when temperature is raised.
Explanation:
To calculate the number of moles, we use the ideal gas equation, which is:

where,
P = pressure of the gas = 1.01 bar
V = Volume of the gas = 1L
R = Gas constant = 
- Number of moles when T = 20° C
Temperature of the gas = 20° C = (273 + 20)K = 293K
Putting values in above equation, we get:

- Number of moles when T = 25° C
Temperature of the gas = 25° C = (273 + 25)K = 298K
Putting values in above equation, we get:

- Number of moles released =

Hence, 0.0007 moles of
is released when temperature is raised from 20° C to 25° C