Answer:
Gd → Gd⁺ + 1e⁻, Gd⁺ → Gd⁺² + 1e⁻, Gd⁺² → Gd⁺³ + 1e⁻
Explanation:
The ionization energy is the energy necessary to remove one electron of the atom, transforming it in a cation. The first ionization energy is the energy necessary to remove the first electron, the second energy, to remove the second electron, and then successively.
Thus, for gadolinium (Gd)
Fisrt ionization:
Gd → Gd⁺ + 1e⁻
Second ionization:
Gd⁺ → Gd⁺² + 1e⁻
Third ionization:
Gd⁺² → Gd⁺³ + 1e⁻
Answer:
2-methoxy-2-methylpropane
Explanation:
The first step for this reaction is the carbocation formation. In this step, a tertiary carbocation is formed. Also, we will have a good leaving group so bromide will be formed. Then the methanol acts as a nucleophile and attacks the carbocation. Next, a positive charge is generated upon the oxygen, this charge can be removed when the hydrogen leaves the molecule as
. (See figure)
Flame colors are produced from the movement of the electrons in the metal ions present in the compounds. When you heat it, the electrons gain energy and can jump into any of the empty orbitals at higher levels Each of these jumps involves a specific amount of energy being released as light energy, and each corresponds to a particular color. As a result of all these jumps, a spectrum of colored lines will be produced. The color you see will be a combination of all these individual colors.
When the concentration is expressed in percentage, you simply have to divide the amount of substance to the total amount of the mixture, then multiply it by 100. In this case, when you want to find the percentage of P in the sample, the solution is as follows:
%P = 7.5 g/100 g * 100 =<em> 7.5%</em>