For this problem, we use the formula for sensible heat which is written below:
Q= mCpΔT
where Q is the energy
Cp is the specific heat capacity
ΔT is the temperature difference
Q = (55.5 g)(<span>0.214 cal/g</span>·°C)(48.6°C- 23°C)
<em>Q = 304.05 cal</em>
84.34 grams of grams of iron (III) chloride that can be produced is maximum because Fe is the limiting reagent in this reaction and chlorine gas is excess reagent.
Explanation:
Balanced chemical equation:
2 Fe + 3 Cl2 → 2 FeCl3
DATA GIVEN:
iron = atoms
mass of chlorine gas = 67.2 liters
mass of FeCl3 = ?
number of moles of iron will be calculated as
number of moles = 
number of moles = 
number of moles = 0.52 moles of iron
moles of chlorine gas
number of moles = 
Putting the values in the equation:
n =
(atomic mass of chlorine gas = 70.96 grams/mole)
= 947.01 moles
Fe is the limiting reagent so
2 moles of Fe gives 2 moles of FeCl3
0.52 moles of Fe will give
= 
0.52 moles of FeCl3 is formed.
to convert it into grams:
mass = n X atomic mass
= 0.52 x 162.2 (atomic mass of FeCl3 is 162.2grams/mole)
<h3> = 84.34 grams </h3>
<u>Answer:</u> The number of carbon, hydrogen and oxygen atoms on the left side of the reaction are 12, 28 and 38 respectively
<u>Explanation:</u>
In a chemical equation, the chemical species are termed as reactants or products.
Reactants are defined as the species which react in the reaction and are written on the left side of the reaction arrow.
Products are defined as the species which are produced in the reaction and are written on the right side of the reaction arrow.
For the given chemical equation:

On the reactant side:
Number of carbon atoms = (6 × 2) = 12
Number of hydrogen atoms = (14 × 2) = 28
Number of oxygen atoms = (2 × 19) = 38
Hence, the number of carbon, hydrogen and oxygen atoms on the left side of the reaction are 12, 28 and 38 respectively
The answer is the choice A