Answer:
Vaporization
Explanation:
Vaporization is the change of a specie to the gaseous state. To 'disappear' in this case simply means to change to the gaseous state.
Substances with high vapour pressure tend to be easily converted to vapour phase. Hence if Glade air freshener gel 'disappears' easily, then it has a high vapour pressure and is easily converted to vapour (gas).
The chemical formula for ammonia is NH3. So first, you need to find the molar mass of ammonia (how many grams in one mole).
N=14g
H3=3g
So one mole of NH3 is 17 grams, you can divide 82.9 grams by 17 grams to find the number of molecules. The answer should be 4.876 moles (molecules) of ammonia. Hope this helps!
Answer:
itsy I just got the tests back and I got it right letterc
Answer:
T₂ = 669.2 K
Explanation:
Given data:
Initial pressure = 660 torr
Initial temperature = 26 °C (26 +273 = 299 K)
Final volume = 280 mL ( 280/1000 = 0.28 L)
Final pressure = 940.0 torr
Final volume = 0.44 L
Final temperature = ?
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
P₁V₁/T₁ = P₂V₂/T₂
T₂ = P₂V₂ T₁ /P₁V₁
T₂ = 940 torr × 0.44 L × 299 K / 660 torr × 0.28 L
T₂ = 123666. 4 torr. L. K / 184.8 torr. L
T₂ = 669.2 K
Answer:- 38.2 g.
Solution:- The equation used for solving this type of calorimetry problems is:

where, q is the heat energy, m is mass, c is specific heat and delta T is the change in temperature.
Water temperature is increasing from 14.5 degree C to 50.0 degree C.
= 35.5 degree C
q is given as 5680 J and specific heat value is
.
The equation could be rearranged for m as:

Let's plug in the values in it:

m = 38.2 g
So, the mass of water in the kettle is 38.2 g.