Answer:
MnO- Manganese Oxide
Explanation:
Empirical formula: This is the formula that shows the ratio of elements
present in a
compound.
How to determine Empirical formula
1. First arrange the symbols of the elements present in the compound
alphabetically to determine the real empirical formula. Although, there
are exceptions to this rule, E.g H2So4
2. Divide the percentage composition by the mass number.
3. Then divide through by the smallest number.
4. The resulting answer is the ratio attached to the elements present in
a compound.
Mn O
% composition 72.1 27.9
Divide by mass number 54.94 16
1.31 1.74
Divide by the smallest number 1.31 1.31
1 1.3
The resulting ratio is 1:1
Hence the Empirical formula is MnO, Manganese oxide
When the reaction equation is:
CaSO3(s) → CaO(s) + SO2(g)
we can see that the molar ratio between CaSO3 & SO2 is 1:1 so, we need to find first the moles SO2.
to get the moles of SO2 we are going to use the ideal gas equation:
PV = nRT
when P is the pressure = 1.1 atm
and V is the volume = 14.5 L
n is the moles' number (which we need to calculate)
R ideal gas constant = 0.0821
and T is the temperature in Kelvin = 12.5 + 273 = 285.5 K
so, by substitution:
1.1 * 14.5 L = n * 0.0821 * 285.5
∴ n = 1.1 * 14.5 / (0.0821*285.5)
= 0.68 moles SO2
∴ moles CaSO3 = 0.68 moles
so we can easily get the mass of CaSO3:
when mass = moles * molar mass
and we know that the molar mass of CaSO3= 40 + 32 + 16 * 3 = 120 g/mol
∴ mass = 0.68 moles* 120 g/mol = 81.6 g
The molarity of KBr solution is 1.556 M
molarity is defined as the number of moles of solute in volume of 1 L solution.
the number of KBr moles in 1 L - 1.556 mol
Therefore in 200.0 L - 1.556 mol/L x 200.0 L = 311.2 mol
Molar mass of KBr - 119 g/mol
mass of Kbr - 311.2 mol x 119 g/mol = 37 033 g
mass of solute therefore is 37.033 kg
Yes due to the radioactivity having nothing to do with the chemical equation given it will release radiation at a rate determined by it's half life.
Answer:
1/3
Explanation:
Pyruvate is produced by the glycolysis in cytoplasm. The oxidation of pyruvate takes place in mitochondrial matrix.
Pyruvate is converted to acetyl-CoA in the reaction given below:
Pyruvate + NAD⁺ + CoA-SH ⇒ acetyl-CoA + NADH + CO₂
1 molecule of carbon dioxide is eliminated from 1 molecule of pyruvate.
Also,
2 molecules of carbon dioxide is eliminated from 2 molecules of pyruvate (as glucose on glycolysis yields 2 molecules of pyruvate).
Also, acetyl-CoA further goes into the citric acid cycle and produces 2 molecules of carbon dioxide.
Thus pyruvate produces total 3 molecules of CO₂ and hence glucose produces 6 molecules of CO₂ (as glucose on glycolysis yields 2 molecules of pyruvate)
Thus,
<u>Fraction = 2/6 = 1/3</u>