Answer: explained below
Explanation:
Matter can change form through physical and chemical changes, but through any of these changes, matter is conserved. The same amount of matter exists before and after the change—none is created or destroyed.
Answer:
The molecular formula of the phosphorus is P4
Explanation:
<u>Step 1:</u> Data given
Density of phosphorus vapor at 310 °C and 775 mmHg = 2.64g /L
<u>Step 2: </u>Calculate the molecular weight
We assume phosphorus to be an ideal gas
So p*V = n*R*T
⇒ with p = the pressure of phosphorus = 775 mmHg
⇒ with V = the Volume
⇒ with n = the number of moles = mass/molecular weight
⇒ with R = ideal gas constant = 0.08206 L*atm/K*mol
⇒ with T = the absolute temperature
p*V = m/MW *R*T
MW = mRT/PV
⇒ Since the volume is unknown but can be written as density = mass/volume
MW = dRT/P
MW = (2.64g/L * 0.08206 L*atm/K*mol * 583 Kelvin)/1.0197 atm
MW = 123.86 g/mol
<u>Step 3</u>: Calculate molecular formula of phosphorus
The relative atomic mass of phosphorus = 30.97 u
123.86 / 30.97 = 4
The molecular formula of the phosphorus is P4
The final temperature of the lead-water system will be lower than the final temperature of the copper-water system.
Answer:
a. withdraws electrons inductively
b. donates electrons by hyperconjugation
c. donates electrons by resonance
d. withdraws electrons inductively
Explanation:
a. The bromide ion is a highly electronegative ion (in the halide series). Electronegative substituents on acids increase the acidity by inductive electron withdrawal method. The higher the electronegativity of a substance, the greater the acidity. The halogens have this order of electronegativity:
F > Cl > Br>I
b. The carboxyl groups have a stabilization of the sigma and pi bonds. This is achieved through a special delocalization of electrons. Because of the delocalization, hyperconjugation is the result effect.
c. The NHCH₃ group has a highly electonegative nitrogen atom that pulls the electron cloud towards itself. In this case, it withdraws electrons inductively. As a result, it donates electrons by resonance.
d. The OCH₃ group has a highly electonegative oxygen atom. This oxygen atom withdraws electron cloud towards itself. As a result, it withdraws electrons inductively.
Answer:
Possible lowest volume = 0.19 cm
Possible highest volume = 0.21 cm
Explanation:
given data
volumetric pipette uncertainty = 0.01 cm³
total volume = 0.20 cm³
solution
we will get here Possible lowest and highest volume that is express as
Possible lowest volume = total volume - uncertainty .....................1
Possible highest volume = total volume + uncertainty ....................2
put here value in both equation and we get
Possible lowest volume = 0.20 cm - 0.01 cm
Possible lowest volume = 0.19 cm
and
Possible highest volume = 0.20 cm + 0.01 cm
Possible highest volume = 0.21 cm