answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DerKrebs [107]
1 year ago
7

How many moles of NaCl are present in a solution with a molarity of 8.59 M and a volume of 125 mL

Chemistry
2 answers:
AleksandrR [38]1 year ago
8 0

Answer:

Moles= 1.07mol

Explanation:

C= 8.59M, V= 0.125dm3

n= C×V

n= 8.59×0.125= 1.07mol

Sergio [31]1 year ago
7 0

Answer:

1.07ML

Explanation:

You might be interested in
Complete combustion of a 0.600-g sample of a compound in a bomb calorimeter releases 24.0 kJ of heat. The bomb calorimeter has a
JulijaS [17]

Answer : The correct option is, 30.9^oC

Explanation :

Formula used :

q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})

where,

q = heat released = 24 KJ

m = mass of bomb calorimeter = 1.30 Kg

c = specific heat = 3.41J/g^oC

T_{final} = final temperature = ?

T_{initial} = initial temperature = 25.5^oC

Now put all the given values in the above formula, we get  the final temperature of the calorimeter.

q=m\times c\times (T_{final}-T_{initial})

24KJ=1.30Kg\times 3.41J/g^oC\times (T_{final}-25.5)^oC

T_{final}=30.9^oC

Therefore, the final temperature of the calorimeter is, 30.9^oC

5 0
2 years ago
Read 2 more answers
To prepare a 2 M solution of potassium nitrate (KNO3), which quantities must be measured? The mass of the and the volume of the
Olin [163]

Answer:

The mass of the solute and the volume of the solution.

Explanation:

Hello,

In this case, given the formula of molarity:

M=\frac{n_{solute}}{V_{solution}}

In such a way, since the moles could not be directly measured, we must measure the mass of the solute and by using its molar mass, one could compute its moles. Moreover, since the solution is composed by the solvent (typically water) and the solute, we consequently must measure the volume of the solution needed for the preparation of such concentration-known solution. In such a way, we can actually prepare the required solution.

Best regards.

4 0
2 years ago
Read 2 more answers
At higher elevations, the boiling point of water decreases, due to the decrease in atmospheric pressure. As a result, what could
amid [387]
When we say decrease in boiling point, that means, we achieve boiling at a more lower temperature (lower than 100deg C). This is due to the lower atmospheric pressure. Boiling happens when the vapor pressure is equal the atmospheric pressure. Lower atmospheric pressure takes lower temperature for vapor pressure to equate with the atmospheric pressure. The answer here is letter B. 
At higher elevations, it would take longer to hard boil an egg, because there is a lower boiling point, so the egg is boiling in water at a lower temperature.

8 0
1 year ago
A 100 mL reaction vessel initially contains 2.60×10^-2 moles of NO and 1.30×10^-2 moles of H2. At equilibrium the concentration
Sliva [168]

Answer:

<h2>The equilibrium constant Kc for this reaction is 19.4760</h2>

Explanation:

The volume of vessel used= 100 ml

Initial moles of NO= \frac{2.60}{10^2} moles

Initial moles of H2= \frac{1.30}{10^2} moles

Concentration of NO at equilibrium= 0.161M

Concentration(in M)=\frac{moles}{volume(in litre)}

Moles of NO at equilibrium= 0.161(\frac{100}{1000})

                                            =\frac{1.61}{10^2} moles

               

                    2H2 (g)        +    2NO(g) <—>    2H2O (g) +    N2 (g)

<u>Initial</u>          :1.3*10^-2          2.6*10^-2                0                   0        moles

<u>Equilibrium</u>:1.3*10^-2 - x     2.6*10^-2-x              x                   x/2     moles

∴\frac{2.60}{10^2}-x=\frac{1.61}{10^2}

⇒x=\frac{0.99}{10^2}

Kc=\frac{[H2O]^2[N2]}{[H2]^2[NO]^2} (volume of vesselin litre)

<u>Equilibrium</u>:0.31*10^-2      1.61*10^-2          0.99*10^-2        0.495*10^-2  moles

⇒Kc=\frac{(0.0099)^2(0.00495)}{(0.0031)^2(0.0161)^2}  (0.1)

⇒Kc=19.4760

3 0
2 years ago
For the following equilibrium: A+2B⇋C+3D If the change in concentration for B is 0.44 M, what will be the change in concentratio
Readme [11.4K]

Answer:0.22M

Explanation:

5 0
2 years ago
Other questions:
  • Which statement describes the transfer of heat energy that occurs when an ice cube is added to an insulated container with 100 m
    7·1 answer
  • Write a balanced equation for the reaction of nach3coo (also written as nac2h3o2) and hcl. express your answer as a chemical equ
    7·2 answers
  • In thionyl chloride, cl2so (s is the central atom), the formal charge on sulfur and number of lone pairs on sulfur are, respecti
    5·2 answers
  • When 64.0 g of methanol (CHOH) is burned, 1454 kJ of energy is produced. What is the heat of combustion for methanol?
    14·1 answer
  • Calculate the ph of a solution formed by mixing 150.0 ml of 0.10 m hc7h5o2 with 100.0 ml of 0.30 m nac7h5o2. The ka for hc7h5o2
    9·1 answer
  • That's just the tip of the iceberg" is a popular expression you may have heard. It means that what you can see is only a small p
    6·1 answer
  • Rust results from iron’s reaction to oxygen. An iron nail gains mass when it rusts. How does this reaction support the law of co
    14·1 answer
  • which intensive physical property is observed when droppings of a person seated inside a closed room has able to reach a person
    7·1 answer
  • One litre of hydrogen at STP weight 0.09gm of 2 litre of gas at STP weight 2.880gm. Calculate the vapour density and molecular w
    9·1 answer
  • What impact would adding twice as much Na2 CO3 than required for stoichiometric quantities have on the quantity of product produ
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!