Answer:
29.76ºC
Explanation:
The melting point is a physical property of the matter it doesn't change as you slice the gallium into three different parts. Thus, it's the same value 29.76ºC
Answer: A
Explanation:
Considering the order of filling electrons into orbitals, movement from a higher to a lower energy level results in the emission of a photon with energy equal to the energy difference between the two energy levels. However, the energies of different orbitals are close together for high values of n (principal quantum number). Their relative energies may change significantly when they form ions. This implies that energy levels are better separated and have high differences in energy for low values of n. Hence the answer. This means that photons transiting between these Lowe n levels will posses higher photon energy due to larger energy difference between levels.
<span>A dim white dwarf star, this is a star with a similar mass to earth. This star has no further fusion reactions at it's core. After this type of star has used up all of it's energy it will become a black dwarf star. Usually they are composed of oxygen and carbon. Sirius a and b are both white dwarf stars that orbit each other.</span>
Answer is: Kb for methylamine is 4.37·10⁻⁴.<span>
Chemical reaction: CH</span>₃NH₂ + H₂O → CH₃NH₃⁺ + OH⁻.
c(CH₃NH₂) = 0.253 M.
α = 4.07% ÷ 100% = 0.0407.
[CH₃NH₃⁺] = [OH⁻] = c(CH₃NH₂) · α.
[CH₃NH₃⁺] = [OH⁻] = 0.253 M · 0.0407.
[CH₃NH₃⁺] = [OH⁻] = 0.0103 M.
[CH₃NH₂] = 0.253 M - 0.0103 M.
[CH₃NH₂] = 0.2427 M.
Kb = [CH₃NH₃⁺] · [OH⁻] / [CH₃NH₂].
Kb = (0.0103 M)² / 0.2427 M.
Kb = 4.37·10⁻⁴.
Answer:
<h2>The answer is 1.48 L</h2>
Explanation:
In order to find the original volume we use the same for Boyle's law which is

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
Since we are finding the original volume

From the question
P1 = 172 kPa = 172000 Pa
P2 = 85 kPa = 85000 Pa
V2 = 3 L
We have

We have the final answer as
<h3>1.48 L</h3>
Hope this helps you