Answer:
Mass= 2.77g
Explanation:
Applying
P=2.09atm, V= 1.13L, R= 0.082, T= 291K, Mm of N2= 28
PV=nRT
NB
Moles(n) = m/M
PV=m/M×RT
m= PVM/RT
Substitute and Simplify
m= (2.09×1.13×28)/(0.082×291)
m= 2.77g
Answer:
For a substance to classify as a mineral, it must lie within certain parameters. It should be an inorganic solid, that is naturally occurring in nature (not synthesized), with an ordered internal structure and a definite chemical composition.
By definite chemical composition, geologists mean that the mineral must be have chemical constituents that have an unvarying chemical composition, or a chemical composition that oscillates withing a very limited and specific range.
An example is the mineral, halite. It has a chemical composition of one sodium atom and one chloride atom, represented as NaCl and is unchanging in this composition throughout nature.
<h3>Hope this helps</h3>
Answer:
D = 28.2g
Explanation:
Initial temperature of metal (T1) = 155°C
Initial Temperature of calorimeter (T2) = 18.7°C
Final temperature of solution (T3) = 26.4°C
Specific heat capacity of water (C2) = 4.184J/g°C
Specific heat capacity of metal (C1) = 0.444J/g°C
Volume of water = 50.0mL
Assuming no heat loss
Heat energy lost by metal = heat energy gain by water + calorimeter
Heat energy (Q) = MC∇T
M = mass
C = specific heat capacity
∇T = change in temperature
Mass of metal = M1
Mass of water = M2
Density = mass / volume
Mass = density * volume
Density of water = 1g/mL
Mass(M2) = 1 * 50
Mass = 50g
Heat loss by the metal = heat gain by water + calorimeter
M1C1(T1 - T3) = M2C2(T3 - T2)
M1 * 0.444 * (155 - 26.4) = 50 * 4.184 * (26.4 - 18.7)
0.444M1 * 128.6 = 209.2 * 7.7
57.0984M1 = 1610.84
M1 = 1610.84 / 57.0984
M1 = 28.21g
The mass of the metal is 28.21g
Answer is: selenium (Se).
1) electron configuration: ₃₄Se 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4sp⁴.
2) ₃₃As 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4sp³.
3) ₃₆Kr 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4sp⁶.
4) ₃₁Ga 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4sp¹.
Valence electrons of selenium are 4s²4sp⁴.
Answer:
The essence including its particular subject is outlined in the following portion mostly on clarification.
Explanation:
- The energy throughout the campfire comes from either the wood's latent chemical energy until it has been burned to steam up and launch up across the campfire. The electricity generation for something like a campfire seems to be in the context including its potential chemical energy which is contained throughout the firewood used only to inflame the situation.
- The energy output seems to be in the different types of heat energy radiating across the campfire, laser light generated off by the blaze, and perhaps a little number of electrical waves, registered throughout the firewood cracking whilst they combust throughout the blaze.
and,
chemical energy ⇒ heat energy + light energy + sound energy