This is a type of metathesis reaction, also referred to as double-displacement reactions. In this reaction, the solvent and electrolyte is water, and they are driven by the formation of the non-electrolytic product. Therefore, the driving force behind the neutralization reaction between HCl and NaOH is the formation of sodium chloride, NaCl.
<span>Molar mass(C)= 12.0 g/mol
Molar mass (O2)=2*16.0=32.0 g/mol
Molar mass (CO2)=44.0 g/mol
18g C*1mol C/12 g C = 1.5 mol C
C + O2 → CO2
from reaction 1 mol 1 mol 1 mol
from problem 1.5 mol 1.5 mol 1.5 mol
1.5 mol O2*32 g O2/1 mol O2 = 48 g O2
In reality this reaction requires only 48 g O2 for 18 g carbon.
And from 18 g carbon you can get only
1.5 mol CO2*44 g CO2/1 mol CO2=66 g CO2
But these problem has 72g CO2. The best that we can think, it is a mix of CO2 and O2.
So to find all amount of O2 that was added for the reaction (probably people who wrote this problem wanted this)
we need (the mix of 72g - mass of carbon 18 g)= 54 g.
So the only answer that is possible is </span><span>2.) 54 g.</span>
Find moles of MgSO4.7H2O
molar mass = 246
so moles = 32 / 246 = 0.13 moles.
When heated, all 7 H2O from 1 molecule will be gone.
total moles of H2O present = 7 x 0.13 = 0.91
mass of those H2O = 0.91 x 18 = 16.38g
so mass of anyhydrous MgSO4 remain = 32 - 16.38 = 15.62 g
Answer:
Temperature affects Seismic Wave speed.
Explanation:
Both temperature and pressure affect the speed of Seismic waves. The Speed of Seismic waves increases uniformly as pressure increases, meaning that as depth increases, pressure also increases which causes Seismic Wave speeds to increase as well. This can be calculated and the data can be gathered. Temperature on the other hand decreases the speed of Seismic Waves, therefore we can calculate the difference of speed between what the Seismic Wave should be at a certain pressure with the actual speed gathered. This difference in speed will allow us to determine the actual temperature at that level.