Answer:
Option B
Explanation:
We will check the solubility graph for potassium nitrate, KNO
3. Based on the graph it can be said that the temperature of solution when 130 grams of KNO3 dissolves in 100 grams of water is near to 65 degree Celsius. Now if three grams of solute is increased then the temperature of the solution will increase by a degree or so and hence the most probable temperature would be 68 degree Celsius.
Hence, option B is correct
The formula for chromium (III) phosphate trihydrate is CrPO4- 3H20. This compound if in the anhydrous state, exists as a green crystal whereas a hydrated form violet crystal. The formula for cobalt(II) phosphate octahydrate is Co3(PO4)2•8H2O.
Answer:
sodium has got ionic bonds that are weak
compared to hydrogen covalent bonds that are strong
Answer:
Molarity = 1.93 mol.L⁻¹
Explanation:
Molarity is the unit of concentration used to specify the amount of solute in given amount of solution. It is expressed as,
Molarity = Moles / Volume of Solution ----- (1)
Data Given;
Mass = 11.3 g
Volume = 100 mL = 0.10 L
First calculate Moles for given mass as,
Moles = Mass / M.mass
Moles = 11.3 g / 58.44 g.mol⁻¹
Moles = 0.1933 mol
Now, putting value of Moles and Volume in eq. 1,
Molarity = 0.1933 mol ÷ 0.10 L
Molarity = 1.93 mol.L⁻¹
The answer is 2.135 mol/Kg
Given that molarity is 2M, that is, 2 moles in 1 liter of solution.
Density of solution is 1.127 g/ml
Volume of solution is 1L or 1000 ml
mass of solution (m) = density × volume
m₁ = density × volume = 1.127 × 1000 = 1127 g
mass of solute, m₂ = number of moles × molar mass
m₂ = 2 × 95.211
m₂ = 190.422 g
mass of solvent = m₁ - m₂
= 1127 - 190.422
= 936.578 g
= 0.9366 Kg
molality = number of moles of solute / mass of solvent (in kg)
= 2 / 0.9366
= 2.135 mol/Kg