Answer:
The pH of 0.1 M BH⁺ClO₄⁻ solution is <u>5.44</u>
Explanation:
Given: The base dissociation constant:
= 1 × 10⁻⁴, Concentration of salt: BH⁺ClO₄⁻ = 0.1 M
Also, water dissociation constant:
= 1 × 10⁻¹⁴
<em><u>The acid dissociation constant </u></em>(
)<em><u> for the weak acid (BH⁺) can be calculated by the equation:</u></em>

<em><u>Now, the acid dissociation reaction for the weak acid (BH⁺) and the initial concentration and concentration at equilibrium is given as:</u></em>
Reaction involved: BH⁺ + H₂O ⇌ B + H₃O+
Initial: 0.1 M x x
Change: -x +x +x
Equilibrium: 0.1 - x x x
<u>The acid dissociation constant: </u>![K_{a} = \frac{\left [B \right ] \left [H_{3}O^{+}\right ]}{\left [BH^{+} \right ]} = \frac{(x)(x)}{(0.1 - x)} = \frac{x^{2}}{0.1 - x}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5Cleft%20%5BB%20%5Cright%20%5D%20%5Cleft%20%5BH_%7B3%7DO%5E%7B%2B%7D%5Cright%20%5D%7D%7B%5Cleft%20%5BBH%5E%7B%2B%7D%20%5Cright%20%5D%7D%20%3D%20%5Cfrac%7B%28x%29%28x%29%7D%7B%280.1%20-%20x%29%7D%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%7D%7B0.1%20-%20x%7D)





<u>Therefore, the concentration of hydrogen ion: x = 3.6 × 10⁻⁶ M</u>
Now, pH = - ㏒ [H⁺] = - ㏒ (3.6 × 10⁻⁶ M) = 5.44
<u>Therefore, the pH of 0.1 M BH⁺ClO₄⁻ solution is 5.44</u>
Question:
The question is incomplete. What is required to calculate was not added.The equilibrium data was not also added. Below is the additional questions and the answers.
1. Calculate the minimum solvent that can be used.
2.Using a solvent rate of 1.5 times the minimum, calculate the number of
theoretical stages.
Answer:
1. Minimum solvent = 411.047
2. N = 5
Explanation:
See the attached files for explanations.
Answer:
982.5 kg/m³
Explanation:
When the temperature of a fluid increases, it dilates, and because of the variation of the volume, it's density will vary too. The density can be calculated by the expression:
ρ₁ = ρ₀/(1 + β*(t₁ - t₀))
Where ρ₁ is the final density, ρ₀ the initial density, β is the constant coefficient of volume expansion, t₁ the final temperature, and t₀ the initial temperature.
At t₀ = 4°C, the water desity is ρ₀ = 1,000 kg/m³. The value of the constant for water is β = 0.0002 m³/m³ °C, so, for t₁ = 93°C
ρ₁ = 1,000/(1 + 0.0002*(93 - 4))
ρ₁ = 1,000/(1+ 0.0178)
ρ₁ = 982.5 kg/m³
The ionic character of any compound depend on the lattice energy as well as the electronegativity of element present in that compound.
More would be the lattice energy more would be ionic nature of that compound.
The lattice energy of any compound is inversely proportional to the ionic radii cation and anion.
In given case the ionic radii of oxide in both oxides would be equal therefore the lattice energy only depend on the ionic radii of cation.
As the radii of Magnesium less then radii of lithium therefore lattice energy of Magnesium oxide would be more than lithium oxide.
Hence, MgO would be more ionic in nature than 
Answer:
The carbon footprint of one plastic bottle of mass 23.5 g is 34.390 g.
Explanation:
The carbon footprint of one plastic bottle can be estimated by simple rule of three. That is:


The carbon footprint of one plastic bottle of mass 23.5 g is 34.390 g.