answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zielflug [23.3K]
2 years ago
13

Given equilibrium partial pressures of PNO2= 0.247 atm, PNO = 0.0022atm, and PO2 = 0.0011 atm calculate the equilibrium constant

. Which direction does the reaction need to go to reattain equilibrium if the current reaction partial pressures are PNO2= 0.192 atm, PNO = 0.021 atm, and PO2 = 0.037 atm?
Chemistry
2 answers:
maxonik [38]2 years ago
5 0
Answer 1:
Equilibrium constant (K) mathematically expressed as the ratio of the concentration of products to concentration of reactant. In case of gaseous system, partial pressure is used, instead to concentration.

In present case, following reaction is involved:

                        2NO2    ↔      2NO + O2

Here, K = \frac{[PNO]^2[O2]}{[PNO2]^2}

Given: At equilibrium, <span>PNO2= 0.247 atm, PNO = 0.0022atm, and PO2 = 0.0011 atm
</span>
Hence,  K = \frac{[0.0022]^2[0.0011]}{[0.247]^2}
                 = 8.727 X 10^-8

Thus, equilibrium constant of reaction = 8.727 X 10^-8
.......................................................................................................................

Answer 2:
Given: <span>PNO2= 0.192 atm, PNO = 0.021 atm, and PO2 = 0.037 atm.

Therefore, Reaction quotient = </span>\frac{[PNO]^2[O2]}{[PNO2]^2}
                                              = \frac{[0.021]^2[0.037]}{[0.192]^2}
                                              = 4.426 X 10^-4.

Here, Reaction quotient > Equilibrium constant.

Hence, <span>the reaction need to go to reverse direction to reattain equilibrium </span>
Dominik [7]2 years ago
3 0

Answer:toward the reactants

Explanation:

You might be interested in
Rank the following chemical species from lowest absolute entropy (So) (1) to highest absolute entropy (5) at 298 K?
kramer

Answer:

Rank the following chemical species from lowest absolute entropy (So) (1) to highest absolute entropy (5) at 298 K?

a. Al (s)

b. H2O (l)

c. HCN (g)

d. CH3COOH (l)

e. C2H6 (g)

Explanation:

Entropy is the measure of the degree of disorderness.

In solids, the entropy is very less compared to liquids and gases.

The entropy order is:

solids<liquids<gases

Among the given substances, water in liquid form has a strong intermolecular H-bond.

So, it has also less entropy.

Next acetic acid.

Between the gases, HCN, and ethane, ethane has more entropy due to very weak intermolecular interactions.

HCN has slight H-bonding in IT.

Hence, the entropy order is:

Al(s) < CH3COOH (l) <H2O(l) < HCN(g) < C2H6(g)

7 0
1 year ago
Ethene is a useful substance that can form polymers. It has a melting point of 169°C and a boiling point of 104°C. At which temp
blondinia [14]

Answer:

-169°C to -104°C

Explanation:

Ethene, also known as ethylene exists in solid, liquid and gaseous states. Ethene is an aliens with condensed structural formula C2H4. Athens is a colourless gas. It is flammable and is also a sweet smelling gas in its pure form. It is the monomer in the production of polyethylene which is of great importance in the plastic industry. In agriculture, it is used to induce the ripening of fruits. It can be hydrated in order to produce ethanol.

The liquid range of ethene refers to the temperatures at which ethene is found in the liquid state of matter. It is actually the difference between the melting point and the boiling points of ethene. Hence the liquid range of ethene is -169°C to -104°C

4 0
2 years ago
A solution is prepared by dissolving 10.0 g of NaBr and 10.0 g of Na2SO4 in water to make a 100.0 mL solution. This solution is
Colt1911 [192]

Answer:

M_{Na^+}=1.36M

M_{Br^-}=1.58M

Explanation:

Hello,

At first, it turns out convenient to compute the total moles of sodium that will be dissolved into the solution by considering the added amounts of sodium bromide and sodium sulfate:

n_{Na^+}=n_{Na^+,NaBr}+n_{Na^+,Na_2SO_4}\\n_{Na^+,NaBr}=10.0gNaBr*\frac{1molNaBr}{103gNaBr}*\frac{1molNa^+}{1molNaBr}=0.0971molNa^+\\n_{Na^+,Na_2SO_4}=10.0gNa_2SO_4*\frac{1molNa_2SO_4}{142gNa_2SO_4}*\frac{2molNa^+}{1molNa_2SO_4} =0.141molNa^+\\n_{Na^+}=0.0971molNa^++0.141molNa^+\\n_{Na^+}=0.238molNa^+

Once we've got the moles we compute the final volume via:

V=100.0mL+75.0mL=175.0mL*\frac{1L}{1000mL}=0.1750L

Thus, the molarity of the sodium atoms turn out into:

M_{Na^+}=\frac{0.238mol}{0.1750L} =1.36M

Now, we perform the same procedure but now for the bromide ions:

n_{Br^-}=n_{Br^-,NaBr}+n_{Br^-,AlBr_3}\\n_{Br^-,NaBr}=10.0gNaBr*\frac{1molNaBr}{103gNaBr}*\frac{1molBr^-}{1molNaBr}=0.0971molBr^-\\n_{Br^-,AlBr_3}=0.0750L*0.800\frac{molAlBr_3}{L} *\frac{3molBr^-}{1molAlBr_3}=0.180molBr^- \\n_{Br^-}=0.0971molBr^-+0.180molBr^-\\n_{Br^-}=0.277molBr^-

Finally, its molarity results:

M_{Br^-}=\frac{0.277molBr^-}{0.1750L}=1.58M

Best regards.

7 0
2 years ago
Calculate the molality of 2.0 M MgCl2 solution. The density of the solution is 1.127 g/mL. (The molar mass of MgCl2 = 95.211 g/m
Elan Coil [88]

The answer is 2.135 mol/Kg

Given that molarity is 2M, that is, 2 moles in 1 liter of solution.

Density of solution is 1.127 g/ml

Volume of solution is 1L or 1000 ml

mass of solution (m) = density × volume

m₁ = density × volume = 1.127 × 1000 = 1127 g

mass of solute, m₂ = number of moles × molar mass

m₂ = 2 × 95.211

m₂ = 190.422 g

mass of solvent = m₁ - m₂

= 1127 - 190.422

= 936.578 g

= 0.9366 Kg

molality = number of moles of solute / mass of solvent (in kg)

= 2 / 0.9366

= 2.135 mol/Kg

8 0
2 years ago
Read 2 more answers
When a sample of oxygen gas in a closed container of constant volume is heated until its absolute temperature is doubled, which
saul85 [17]

Answer: b. pressure

Explanation:

Gay-Lussac's Law: This law states that pressure is directly proportional to the temperature of the gas at constant volume and number of moles.

P\propto T     (At constant volume and number of moles)

\frac{P_1}{T_1}=\frac{P_2}{T_2}

where,

P_1 = initial pressure of gas  = p

P_2 = final pressure of gas  = ?

T_1 = initial temperature of gas  = t

T_2 = final temperature of gas = 2t

\frac{p}{t}=\frac{P_2}{2t}

P_2=2p

Thus the pressure also doubles when absolute temperature is doubled.

7 0
2 years ago
Other questions:
  • Paige heated 3.00 g mercury (II) oxide (HgO, 216.59 g/mol) to form mercury (Hg, 200.59 g/mol) and oxygen (O2, 32.00 g/mol). She
    13·2 answers
  • Which of the following refers to a chemical property?. . a. At room temperature, mercury is a liquid, but gold is a solid.. . b.
    5·1 answer
  • A 10.63 g sample of mo2o3(s) is converted completely to another molybdenum oxide by adding oxygen. the new oxide has a mass of 1
    5·1 answer
  • What mass of carbon dioxide could be made from 100 tonnes of calcium carbonate?
    12·1 answer
  • How many mL of a 4.50M NaBr solution are needed to make 250 mL of a 0.75M solution of NaBr?
    10·1 answer
  • water’s molar mass is 18.01 g/mol. The molar mass of glycerol is 92.09 g/mol. At 25 celsius, glycerol is more viscous than water
    9·1 answer
  • What is the melting point of tert-butanol? Besides using a heat lamp, what other options might there be for dispensing a given a
    7·1 answer
  • A scientist discovers a deep bowl-like divot under the ocean off the coast of eastern Mexico that is many kilometers across. The
    10·2 answers
  • Which step should be next in this procedure? List the materials that are needed. Write a conclusion for the experiment. Write a
    8·1 answer
  • HELP PLZ!!! A sample contains only the compound CaCl2 and water. When it is dried, its weight decreases from 5.00g to 4.24g. Wha
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!