Electron cloud is the region around the nucleus in an atom where we can locate an electron.
The concept of electron cloud model was introduced by the Schrodinger and Heisenberg. According to this model, it would be difficult to know the position of the electrons in an atom and they are not particles that orbit around the nucleus. We can only expect the electrons to be present in specific areas called the electron clouds around the nucleus. It is the quantum mechanical model that used the concept of electron clouds. According to the model, the electron cloud or an orbital is a space around the nucleus in an atom where the probability of finding an electron is 90%. It explains that electrons show wave nature. It is difficult to determine the exact position and momentum of an electron in an atom.
84.34 grams of grams of iron (III) chloride that can be produced is maximum because Fe is the limiting reagent in this reaction and chlorine gas is excess reagent.
Explanation:
Balanced chemical equation:
2 Fe + 3 Cl2 → 2 FeCl3
DATA GIVEN:
iron = atoms
mass of chlorine gas = 67.2 liters
mass of FeCl3 = ?
number of moles of iron will be calculated as
number of moles = 
number of moles = 
number of moles = 0.52 moles of iron
moles of chlorine gas
number of moles = 
Putting the values in the equation:
n =
(atomic mass of chlorine gas = 70.96 grams/mole)
= 947.01 moles
Fe is the limiting reagent so
2 moles of Fe gives 2 moles of FeCl3
0.52 moles of Fe will give
= 
0.52 moles of FeCl3 is formed.
to convert it into grams:
mass = n X atomic mass
= 0.52 x 162.2 (atomic mass of FeCl3 is 162.2grams/mole)
<h3> = 84.34 grams </h3>
Answer:
S°m,298K = 85.184 J/Kmol
Explanation:
∴ T = 10 K ⇒ Cp,m(Hg(s)) = 4.64 J/Kmol
∴ 10 K to 234.3 K ⇒ ΔS = 57.74 J/Kmol
∴ T = 234.3 K ⇒ ΔHf = 2322 J/mol
∴ 234.3 K to 298.0 K ⇒ ΔS = 6.85 J/Kmol
⇒ S°m,298K = S°m,0K + ∫CpdT/T(10K) + ΔS(10-234.3) + ΔHf/T(234.3K) + ΔS(234.3-298)
⇒ S°m,298K = 0 + 10.684 J/Kmol + 57.74 J/Kmol + 9.9104 J/Kmol + 6.85 J/kmol
⇒ S°m,298K = 85.184 J/Kmol
Answer:
0.192 mol.
Explanation:
- To calculate the no. of moles of a substance (n), we use the relation:
<em>n = mass / molar mass.</em>
mass of AsH₃ = 15.0 g.
molar mass of AsH₃ = 77.95 g/mol.
∴ The number of moles in 15.0 g AsH₃ = mass / molar mass = (15.0 g) / (77.95 g/mol) = 0.192 mol.
Answer:
6.7 x 10²⁶molecules
Explanation:
Given parameters
Mass of CO₂ = 4.9kg = 4900g
Unknown:
Number of molecules = ?
Solution:
To find the number of molecules, we need to find the number of moles first.
Number of moles = 
Molar mass of CO₂ = 12 + 2(16) = 44g/mol
Number of moles =
= 111.36mole
A mole of substance is the quantity of substance that contains the avogadro's number of particles.
1 mole = 6.02 x 10²³molecules
111.36 moles = 111.36 x 6.02 x 10²³molecules = 6.7 x 10²⁶molecules