Answer:
a. 2-heptanone is more reactive than 4-heptanone
b. chloromethyl phenyl ketone is more reactive than bromomethyl phenyl ketone
Explanation:
The reactivity of the carbonyl compound (ketone ) is affected by the steric effect. The steric effect is a hindrance that occurs in the structure or reactivity of a molecule, which is affected by the physical size and the proximity of the adjacent parts of the molecule.
Between 2-heptanone or 4-heptanone, 2-heptanone is more reactive than 4-heptanone. This is because 2-heptanone is less affected by the steric hindrance, unlike the 4-heptanone.
Similarly, the reactivity of the carbonyl compound (ketone) is also affected by the polarity on the carbon compound, which is associated with how electronegative the substituent attached is to the carbonyl compound. From the periodic table, the electronegativity of the Halogen family decreases down the group. Therefore chlorine is more electronegative than bromine.
As such, chloromethyl phenyl ketone is more reactive than bromomethyl phenyl ketone.
<span>People with protanopia are unable to sense any ‘red’ light, people with deuteranopia do not sense ‘green’ light and people with tritanopia cannot sense ‘blue’ light. If a person perceives the color green, then the yellow sensitive nerves must work somewhat effectively since green is a combination of yellow and blue. Red-sensitive nerves are most likely not responding properly for this person. The answer is C.</span>
<span>When an ice cube is placed on a kitchen counter, heat will flow from the ice cube to the counter, causing the molecules in the counter to move more slowly. The molecules of the counter move more slowly because the heat transferred to them from the ice has reduced their kinetic energy.</span>
2 atoms in a molecule of RSq, TSq contains 3 different types of atoms (Sq, R, and T.)
Answer: 0.67 moles of 
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:


According to stoichiometry:
3 moles of
is produced by 2 moles of 
Thus 1 mole of
is produced by=
of 
Thus 0.67 moles of
are required to produce 28.3 g of