Answer:
[C] carbon solid
Explanation:
Pure solids and liquids are never included in the equilibrium constant expression because they do not affect the reactant amount at equilibrium in the reaction, thus since your equation has [C] as solid it will not be part of the equlibrium equation.
Explanation:
The given data is as follows.
Moles of propylene = 100 moles,
= 300 K
= 800 K,
,
of propylene = 100 J/mol
Now, we assume the following assumptions:
Since, it is a compression process therefore, work will be done on the system. And, work done will be equal to the heat energy liberating without any friction.
W = 

= 
= 5 MJ
Thus, we can conclude that a minimum of 5 MJ work is required without any friction.
Answer:
HOMO of 1,3-butadiene and LUMO of ethylene
HOMO of ethylene LUMO of 1,3-butadiene
Explanation:
1,3 - butadiene underogoes cycloaddition reaction with ethylene to give cyclohexene.
According to Frontier molecular orbital theory HOMO of 1,3 butadiene and LUMO of ethylene and HOMO of ethylene and LUMO of ethylene underoges (4 + 2) in thermal or photochemical condition.
Answer: Option (c) is the correct answer.
Explanation:
A water molecule is made up of two hydrogen atoms and one oxygen atom. Due to the difference in electronegativity of hydrogen and oxygen, the electrons are pulled more towards oxygen atom.
As a result, a partial positive charge will develop on hydrogen atom and a partial negative charge will develop on oxygen atom.
Thus, we can conclude that adjacent water molecules interact through the electrical attraction between the hydrogen of one water molecule and the oxygen of another water molecule.
Answer:
Explanation:
Glucose + ATP → glucose 6-phosphate + ADP The equilibrium constant, Keq, is 7.8 x 102.
In the living E. coli cells,
[ATP] = 7.9 mM;
[ADP] = 1.04 mM,
[glucose] = 2 mM,
[glucose 6-phosphate] = 1 mM.
Determine if the reaction is at equilibrium. If the reaction is not at equilibrium, determine which side the reaction favors in living E. coli cells.
The reaction is given as
Glucose + ATP → glucose 6-phosphate + ADP
Now reaction quotient for given equation above is
![q=\frac{[\text {glucose 6-phosphate}][ADP]}{[Glucose][ATP]}](https://tex.z-dn.net/?f=q%3D%5Cfrac%7B%5B%5Ctext%20%7Bglucose%206-phosphate%7D%5D%5BADP%5D%7D%7B%5BGlucose%5D%5BATP%5D%7D)

so,
⇒ following this criteria the reaction will go towards the right direction ( that is forward reaction is favorable until q = Keq