Answer:
10
Explanation:
pH is defined as the negative logarithm of the concentration of hydrogen ions.
Thus,
pH = - log [H⁺]
Thus, from the formula, more the concentration of the hydrogen ions or more the acidic the solution is, the less is the pH value of the solution.
Thus, solution with pH = 3 will be more acidic than solution with pH =4
Thus, concentration of the [H⁺] when pH =3
3 = - log [H⁺]
[H⁺] = 10⁻³ M
For pH = 4, [H⁺] = 10⁻⁴ M
<u>hence, pH = 3 is 10 times more acidic than pH = 4</u>
The concentration of AlCl3 solution if 150 ml of the solution contains 550 mg of cl- ion is 0.0344 M
calculation
concentration = moles /volume in liters
volume in liters = 150 /1000= 0.15 L
number of moles calculation
write the equation for dissociation of Al2Cl3
that is AlCl3 ⇔ Al^3+ + 3 Cl ^-
find the moles of Cl^- formed
moles =mass/molar mass
mass in grams= 550/ 1000 =0.55 grams
molar mass of Cl^- =35.5 g/mol
moles is therefore= 0.55/35.5 =0.0155 moles
by use of mole ration betweem AlCl3 to Cl^- which is 1:3 the moles of AlCl3 is =0.0155 x 1/3= 5.167 x10^-3 moles
concentration of AlCl3 is therefore= 5.167 x10^-3/ 0.15 =0.0344 M
Answer:
2.12×10²³ atoms.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ atoms. This simply means that 1 mole of zirconium also 6.02×10²³ atoms.
Thus, we can obtain the number of atoms present in 0.3521 mole of zirconium as follow:
1 mole of zirconium also 6.02×10²³ atoms.
Therefore, 0.3521 mole of zirconium will contain = 0.3521 × 6.02×10²³ = 2.12×10²³ atoms.
Therefore, 0.3521 mole of zirconium contains 2.12×10²³ atoms.
<span>Alkanes are unreactive except in combustion reactions.</span>
I think you means the KO2 reacts with H2O. The equation of this reaction is 4KO2+2H2O->4KOH +3O2. The ratio of mole number of O2 and KO2 is 3:4. So the mole number of O2 produced is 0.500/4*3=0.375 mol.