Answer:
C. effusion because there is a movement of a gas through a small opening into a larger volume
Explanation:
Effusion makes fluid/gas molecules move to the container with less pressure or larger volume. In diffusion, the movement should work two ways even though one side might receive more. But in effusion, the movement is rather one way.
This case shows how effusion work because its not the concentration that makes the balls moving to the bottom part of the container. No ball moving from bottom container to top either.
At STP, also known as standard temperature and pressure, 1 mole of a gas occupies 22.4 L. Since we are given with the volume of 6.3L, we calculate the amount of gas in mol.
n = (6.3L)/ (22.4L/mol) = 0.28125 mol
We are given with the mass of 6.7 g. Therefore, the molar mass or molecular weight of the gas is equal to,
6.7g/0.28125 mol = 23.82 g/mol
While I am not the brainliest I can certainly answer.
This was a chemical change because the chemical components were changed, a big giveaway to this was the fizzing, however the temperature rising was also another giveaway.
Answer : Both solutions contain
molecules.
Explanation : The number of molecules of 0.5 M of sucrose is equal to the number of molecules in 0.5 M of glucose. Both solutions contain
molecules.
Avogadro's Number is
=
which represents particles per mole and particles may be typically molecules, atoms, ions, electrons, etc.
Here, only molarity values are given; where molarity is a measurement of concentration in terms of moles of the solute per liter of solvent.
Since each substance has the same concentration, 0.5 M, each will have the same number of molecules present per liter of solution.
Addition of molar mass for individual substance is not needed. As if both are considered in 1 Liter they would have same moles which is 0.5.
We can calculate the number of molecules for each;
Number of molecules =
;
∴ Number of molecules =
which will be = 
Thus, these solutions compare to each other in that they have not only the same concentration, but they will have the same number of solvated sugar molecules. But the mass of glucose dissolved will be less than the mass of sucrose.
Answer:
6,216.684 kilograms of sodium carbonate must be added to neutralize
of sulfuric acid solution.
Explanation:
Mass of sulfuric acid solution = 

Percentage mass of sulfuric acid = 95.0%
Mass of sulfuric acid = 

Moles of sulfuric acid = 

According to reaction , 1 mole of sulfuric acid is neutralized by 1 mole of sodium carbonate.
Then 58,647.96 moles of sulfuric acisd will be neutralized by :
of sodium carbonate
Mass of 58,647.96 moles of sodium carbonate :

6,216,683.76 g = 6,216,683.76 × 0.001 kg = 6,216.684 kg
6,216.684 kilograms of sodium carbonate must be added to neutralize
of sulfuric acid solution.