Answer:

Explanation:
Hello,
In this case, since silver is initially hot as it cools down, the heat it loses is gained by the liquid, which can be thermodynamically represented by:

That in terms of the heat capacities, masses and temperature changes turns out:

Since no phase change is happening. Thus, solving for the heat capacity of the liquid we obtain:

Best regards.
Answer:2
Explanation:
Ba(OH)2 contains two oxygen atoms
BaSO4 contains four oxygen atoms.
This means that barium sulphate contains two more oxygen atoms than barium hydroxide in its formula. This is clearly seen from the two formulae shown above.
<span>when it comes to adding or subtracting numbers, his final answer should have the same number of decimal places as the least precise value.
For example if you add 2 numbers; 10.443 + 3.5 , 10.443 has 3 decimal places and 3.5 has only one decimal place.
Therefore 3.5 is the less precise value.
So when adding these 2 values the final answer should have only one decimal place.
after adding we get 13.943 but it can have upto one decimal place. then the second decimal place is less than 5 so the answer should be rounded off to 13.9.
the answer is the same number of decimal places as the least precise value</span>
Answer: pH=12.69
Explanation:



Initial 0.12 0 0
Eqm 0.12-x x x
![K_a=\frac{[H^+][F^-]}{[HF]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BF%5E-%5D%7D%7B%5BHF%5D%7D)
(neglecting small value of x in comparison to 0.12)

Moles of 



0.06 moles of NaOH will give 0.06 moles of ![[OH^-]](https://tex.z-dn.net/?f=%5BOH%5E-%5D)
Now
moles of
will be neutralized by
moles of
and
moles of
will be left.
Molarity of 
![pOH=-\log[OH^-]=-\log[0.049]=1.31](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D%3D-%5Clog%5B0.049%5D%3D1.31)
pH = 14 - pOH= 14 - 1.31 = 12.69
Answer:

Explanation:
Given:
Initial volume of the balloon V1 = 348 mL
Initial temperature of the balloon T1 = 255C
Final volume of the balloon V2 = 322 mL
Final temperature of the balloon T2 =
To calculate T1 in kelvin
T1= 25+273=298K
Based on Charles law, which states that the volume of a given mass of a ideal gas is directly proportional to the temperature provided that the pressure is constant. It can be applied using the below formula

T2=( V2*T1)/V1
T2=(322*298)/348

Hence, the temperature of the freezer is 276 K