Answer: The pressure of the tires after driving is 4.9atm
Explanation: Please see the attachments below
Answer:
The description is outlined in subsection downwards and according to the query given.
Explanation:
- Saponification seems to be a procedure that requires the conversion or transformation of fat, grease, or lipid by either the intervention of heating a mixture of aqueous alkali towards soap as well as an alcoholic. Soaps contain fatty acid salts, however, mono-fatty acids contain carbon atoms, such as sodium palmitate. Therefore, throughout the water, individuals were indeed soluble.
- However, on another hand, owing to large hydrocarbon strings, triglycerides do not partake in hydrogen bonding. Therefore in water, they aren't dissolved.
Answer:
P = 17.9618 atm
Explanation:
The osmotic pressure can be calculated and treated as if we are talking about an ideal gas, and it's expression is the same:
pV = nRT
However the difference, is that instead of using moles, it use concentration so:
p = nRT/V ----> but M = n/V so
p = MRT
We have the temperature of 18 °C (K = 18+273.15 = 291.15 K) the value of R = 0.08206 L atm / K mol, so we need to calculate the concentration, and we have the mass of HCl, so we use the molar mass of HCl which is 36.45 g/mol:
n = 13.7/36.45 = 0.3759 moles
M = 0.3759/0.5 = 0.7518 M
Now that we have the concentration, let's solve for the osmotic pressure:
p = 0.7518 * 0.08206 * 291.15
<em><u>p = 17.9618 atm</u></em>
Answer:
NH₃/NH₄Cl
Explanation:
We can calculate the pH of a buffer using the Henderson-Hasselbalch's equation.
![pH=pKa+log\frac{[base]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
If the concentration of the acid is equal to that of the base, the pH will be equal to the pKa of the buffer. The optimum range of work of pH is pKa ± 1.
Let's consider the following buffers and their pKa.
- CH₃COONa/CH3COOH (pKa = 4.74)
The optimum buffer is NH₃/NH₄Cl.
Carbonated drinks have the air under pressure so that carbon bubbles are forced into the drink, keeping it carbonated. So when you open a can, the air under pressure in the can comes out of the can at a high speed, making a "whooshing" sound. The gas law that applies to this concept is the Boyle's Law (PV=k or P1V1=P2V2).