Answer:-
molecules.
Solution:- The grams of tetrabromomethane are given and it asks to calculate the number of molecules.
It is a two step unit conversion problem. In the first step, grams are converted to moles on dividing the grams by molar mass.
In second step, the moles are converted to molecules on multiplying by Avogadro number.
Molar mass of
= 12+4(79.9) = 331.6 g per mol
let's make the set up using dimensional analysis:

=
molecules
So, there will be
molecules in 250 grams of
.
Hmm. I'm not 100% sure but. I'm pretty sure it's A because the heated water is below and there's a hotter temp. Also because it's copper, heat will move more quickly. I'm not 100% sure, are there notes you can check?
The intended sense is that of a reaction that depends on absorbing heat if it is to proceed. The opposite of an endothermic process is an exothermic process, one that releases "gives out" energy in the form of heat
[H+] in first brand:
4.5 = -log([H+])
[H+] = 10^(-4.5)
[H+] in second brand:
5 = -log[H+]
[H+] = 10^(-5)
Difference = 10^(-4.5) - 10^(-5)
= 2.2 x 10⁻⁵
The answer is A.
The correct answer is option d, that is, atoms of the element.
As the atoms are neither destroyed nor created in a chemical reaction, the sum of the mass of the products in a reaction must be equivalent to the sum of the mass of the reactants.
The chemical reactions must be balanced, they must exhibit a similar number of atoms of each element on both the sides of the equation. As a consequence, the mass of the reactants must be equivalent to the mass of the products of the reaction.