Explanation:
Below is an attachment containing the solution.
Answer:
H₃PO₄/H₂PO₄⁻ and HCO₃⁻/CO₃²⁻
Explanation:
An acid is a proton donor; a base is a proton acceptor.
Thus, H₃PO₄ is the acid, because it donates a proton to the carbonate ion.
CO₃²⁻ is the base, because it accepts a proton from the phosphoric acid.
The conjugate base is what's left after the acid has given up its proton.
The conjugate acid is what's formed when the base has accepted a proton.
H₃PO₄/H₂PO₄⁻ make one conjugate acid/base pair, and HCO₃⁻/CO₃²⁻ are the other conjugate acid/base pair.
H₃PO₄ + CO₃²⁻ ⇌ H₂PO₄⁻ + HCO₃⁻
acid base conj. conj.
base acid
Convert 57.6 L to dm3 and divide it by 24
A 0.12 M solution of an acid that only slightly ionizes in solution would be termed a weak acid. Weak acids are acids which do not completely dissociate in water. Thus lowering the presence of hydronium ions which measures the pH of an acid. <span />
Answer:
1. (S,O) < (Se,S) < (C,H) = (H,I) = (H,F) < (Si,Cl) < (K,Br)
Explanation:
The covalent character always increases down the group, this is because ionic character decreases down the group and also electronegativity.
In the same way, Covalent character always decreases across a period because electronegativity increases across a period.
The higher the electronegativity values between the two atoms, the more ionic it will be.