I am attempting the problem for phosphonium Ion rather than its chloride salt. The chemical equation is shown below along with molar masses in mg.
First of all we will calculate the amounts of reactants required for the synthesis of 220 mg of phophonium ion. Calculations for both reactants is as follow,
For
Benzyl chloride,

=

Solving for X,
X =

X = 78.79 mg
For PPh₃:

=

Solving for X,
X =

X = 163.27 mg
Now, Assuming these values as for 95 % conversion, we can calculate 100 % yield as follow,
when

=

Solving for X,
X =

= 231.57 mg
Now, calculate reactants mass with respect to 231.57 mg
when

=

Solving for ,
X =

=
82.93 mg of Benzyl chloride
when

=

Solving for ,
X =

=
171.85 mg of PPh3
So, reaction was started with reacting
82.93 mg of Benzyl Chloride and
171.85 mg of Triphenyl Phosphine.
Hello!
If the frequency of a radio station is 88.1 MHz, the wavelength of the wave used by this radio station for its broadcast is 3.403 m
<h2>Why?</h2>
We are going to use the following equation that shows the relation of the frequency of a wave with its wavelength, knowing that radio waves are electromagnetic waves and they travel at the speed of light (299 792 458 m/s):

Have a nice day!
The answer is developer .
Chloe wants to lighten the color of her dark hair, which will require the use of both hair color and hydrogen peroxide.
Hydrogen peroxide (H₂O₂) is an example of a most commonly used developer in hair color.
Hydrogen peroxide lighten hair color, as it can dissolve darker pigment. According to the natural hair color and the length of time a person will leave hydrogen peroxide on hair, hair can turn somewhere on the color spectrum between caramel, orange and yellow.
Ideal solutions obey Raoult's law, which states that:
P_i = x_i*(P_pure)_i
where
P_i is the partial pressure of component i above a solution
x_i is the mole fraction of component i in the solution
(P_pure)_i is the vapor pressure of pure component i
In this case,
P_benzene = 0.59 * 745 torr = 439.6 torr
P_toluene = (1-0.59) * 290 torr = 118.9 torr
The total vapor pressure above the solution is the sum of the vapor pressures of the individual components:
P_total = (439.6 + 118.9) torr = 558.5 torr
Assuming the gas phase also behaves ideally, the partial pressure of each gas in the vapor phase is proportional to its molar concentration, so the mole fraction of toluene in the vapor phase is:
118.9 torr/558.5 torr = 0.213