S, sulfur does not have a noble gas electron.
The oxidation number of iodine is 5 in Mg(IO3)2 which can be calculated as
Mg(IO3)2
MgI2O6
As we know that
Mg has +2
O has -2
So,
(+2) + 2I + 6 (-2)=0
2 + 2I - 12 =0
10+ 2I =0
10 = 2I
I =5
At a constant temperature and pressure, liquids retain their volume
<h2>Answer:</h2>
The mass of the system will remain the same if there is no conversion of mass to energy in the reaction.
<h3>Explanation:</h3>
- If the system is closed, then according to the law of mass conservation the mass of the reaction system will remain the same.
- <u><em>Law of conservation of the mass: In simple words, it is described as the mass of a closed system can never be changed, it may transfer from one form to another or change into energy.</em></u>
- But if the reaction involves energy transfer like heat or light production, in this case, the mass can be changed.
Answer: The value of
for the reaction is, -2512.4 kJ
Explanation:
The chemical equation for the combustion of acetylene follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(3\times \Delta H^o_f_{(CO_2(g))})+(4\times \Delta H^o_f_{(H_2O(g))})]-[(1\times \Delta H^o_f_{(C_2H_2(g))})+(5\times \Delta H^o_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%283%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_2H_2%28g%29%29%7D%29%2B%285%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28O_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(4\times (-393.5))+(2\times (-241.8))]-[(2\times (227.4)+(5\times (0))]\\\\\Delta H^o_{rxn}=-2512.4kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%284%5Ctimes%20%28-393.5%29%29%2B%282%5Ctimes%20%28-241.8%29%29%5D-%5B%282%5Ctimes%20%28227.4%29%2B%285%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_%7Brxn%7D%3D-2512.4kJ)
Therefore, the value of
for the reaction is, -2512.4 kJ