Answer:
Newton's Third Law
Explanation:
Newton's Third Law stipulates that for every action there is an equal and opposite reaction.
So when the two players are tackling they exert a force on each other.
If player 1 tackles (exerts a force) player 2, player 2 will exert an equal and opposite reaction on player 1 as stated in Newton's Third Law.
Therefore when they tackle each other so hard they both experience reaction forces so powerful that they fly in opposite directions.
Thus this is an example of the Newton's Third Law.
Answer : The vapor pressure (in atm) of a solution is, 0.679 atm
Explanation : Given,
Mass of
= 1.00 kg = 1000 g
Moles of
= 3.68 mole
Molar mass of
= 18 g/mole
Vapor pressure of water = 0.692 atm
First we have to calculate the moles of
.

Now we have to calculate the mole fraction of 

Now we have to partial pressure of solution.
According to the Raoult's law,

where,
= vapor pressure of solution
= vapor pressure of water = 0.692 atm
= mole fraction of water = 0.938



Therefore, the vapor pressure (in atm) of a solution is, 0.679 atm
Answer:
(A) pH < 1 the predominant form is the cation: H3C-C(H)(NH3+)-COOH
(B) pH = pl the predominant form is the zwitterion H3C-C(H)(NH3+)-COO-
(C) pH > 11 the predominant form is the anion: H3C-C(H)(NH2)-COO-
(D) Does not occurs in any significant pH: H3C-C(H)(NH2)-COOH
Explanation:
Amino acids are bifunctional because they have an amine group and a carboxyl group. The amine group is a weak base and the carboxyl group is a weak acid, but the pKa of both groups will depend on the whole structure of the amino acid. Also, every amino acid has an isoelectric point (pI), which means the pH were the predominant form of the amino acid is the zwitterion. The structure of the alanine (CH3CH2NH2COOH) shows it has the carboxyl group at C1 with a pKa1 of 2.3 and the amino group at C2 whit the pKa2 of 9.7. The isoelectric poin (pI) of Alanine is 6. Consequently, the protonation of the molecule will depend on the pH of the solution. There are three possibilities:
1) If the pH is under the pKa of the carboxyl group (2.3) the predominant form will be with the amino group protonated, forming a cation (CH3CH(NH3+)COOH).
2) If the pH is between pKa1 (2.3) and pKa2 (9.7) the predominant form will be the zwitterion (CH3CH(NH3+)(COO-)).
3) If the pH is upper the pKa2 of the amino group (9.7) the predominant form will be with the carboxyl group deprotonated, forming an anion (CH3CHNH2(COO-)).
Answer: Non polar solvents
Explanation:
Since with increasing the size of alkyl group hydrophobic nature increases and solubility in polar solvents decreases .
Hence Carboxylic acids with more than 10 carbon atoms, solubility is more in non polar solvents.
Answer would be B. I provided work on an image attached. Message me if u have any other questions on how to do it